// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Google Mock - a framework for writing C++ mock classes.
//
// This file tests some commonly used argument matchers.

#include <functional>
#include <memory>
#include <string>
#include <tuple>
#include <vector>

#include "test/gmock-matchers_test.h"

// Silence warning C4244: 'initializing': conversion from 'int' to 'short',
// possible loss of data and C4100, unreferenced local parameter
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244 4100)


namespace testing {
namespace gmock_matchers_test {
namespace {

INSTANTIATE_GTEST_MATCHER_TEST_P(MonotonicMatcherTest);

TEST_P(MonotonicMatcherTestP, IsPrintable) {
  stringstream ss;
  ss << GreaterThan(5);
  EXPECT_EQ("is > 5", ss.str());
}

TEST(MatchResultListenerTest, StreamingWorks) {
  StringMatchResultListener listener;
  listener << "hi" << 5;
  EXPECT_EQ("hi5", listener.str());

  listener.Clear();
  EXPECT_EQ("", listener.str());

  listener << 42;
  EXPECT_EQ("42", listener.str());

  // Streaming shouldn't crash when the underlying ostream is NULL.
  DummyMatchResultListener dummy;
  dummy << "hi" << 5;
}

TEST(MatchResultListenerTest, CanAccessUnderlyingStream) {
  EXPECT_TRUE(DummyMatchResultListener().stream() == nullptr);
  EXPECT_TRUE(StreamMatchResultListener(nullptr).stream() == nullptr);

  EXPECT_EQ(&std::cout, StreamMatchResultListener(&std::cout).stream());
}

TEST(MatchResultListenerTest, IsInterestedWorks) {
  EXPECT_TRUE(StringMatchResultListener().IsInterested());
  EXPECT_TRUE(StreamMatchResultListener(&std::cout).IsInterested());

  EXPECT_FALSE(DummyMatchResultListener().IsInterested());
  EXPECT_FALSE(StreamMatchResultListener(nullptr).IsInterested());
}

// Makes sure that the MatcherInterface<T> interface doesn't
// change.
class EvenMatcherImpl : public MatcherInterface<int> {
 public:
  bool MatchAndExplain(int x,
                       MatchResultListener* /* listener */) const override {
    return x % 2 == 0;
  }

  void DescribeTo(ostream* os) const override { *os << "is an even number"; }

  // We deliberately don't define DescribeNegationTo() and
  // ExplainMatchResultTo() here, to make sure the definition of these
  // two methods is optional.
};

// Makes sure that the MatcherInterface API doesn't change.
TEST(MatcherInterfaceTest, CanBeImplementedUsingPublishedAPI) {
  EvenMatcherImpl m;
}

// Tests implementing a monomorphic matcher using MatchAndExplain().

class NewEvenMatcherImpl : public MatcherInterface<int> {
 public:
  bool MatchAndExplain(int x, MatchResultListener* listener) const override {
    const bool match = x % 2 == 0;
    // Verifies that we can stream to a listener directly.
    *listener << "value % " << 2;
    if (listener->stream() != nullptr) {
      // Verifies that we can stream to a listener's underlying stream
      // too.
      *listener->stream() << " == " << (x % 2);
    }
    return match;
  }

  void DescribeTo(ostream* os) const override { *os << "is an even number"; }
};

TEST(MatcherInterfaceTest, CanBeImplementedUsingNewAPI) {
  Matcher<int> m = MakeMatcher(new NewEvenMatcherImpl);
  EXPECT_TRUE(m.Matches(2));
  EXPECT_FALSE(m.Matches(3));
  EXPECT_EQ("value % 2 == 0", Explain(m, 2));
  EXPECT_EQ("value % 2 == 1", Explain(m, 3));
}

INSTANTIATE_GTEST_MATCHER_TEST_P(MatcherTest);

// Tests default-constructing a matcher.
TEST(MatcherTest, CanBeDefaultConstructed) { Matcher<double> m; }

// Tests that Matcher<T> can be constructed from a MatcherInterface<T>*.
TEST(MatcherTest, CanBeConstructedFromMatcherInterface) {
  const MatcherInterface<int>* impl = new EvenMatcherImpl;
  Matcher<int> m(impl);
  EXPECT_TRUE(m.Matches(4));
  EXPECT_FALSE(m.Matches(5));
}

// Tests that value can be used in place of Eq(value).
TEST(MatcherTest, CanBeImplicitlyConstructedFromValue) {
  Matcher<int> m1 = 5;
  EXPECT_TRUE(m1.Matches(5));
  EXPECT_FALSE(m1.Matches(6));
}

// Tests that NULL can be used in place of Eq(NULL).
TEST(MatcherTest, CanBeImplicitlyConstructedFromNULL) {
  Matcher<int*> m1 = nullptr;
  EXPECT_TRUE(m1.Matches(nullptr));
  int n = 0;
  EXPECT_FALSE(m1.Matches(&n));
}

// Tests that matchers can be constructed from a variable that is not properly
// defined. This should be illegal, but many users rely on this accidentally.
struct Undefined {
  virtual ~Undefined() = 0;
  static const int kInt = 1;
};

TEST(MatcherTest, CanBeConstructedFromUndefinedVariable) {
  Matcher<int> m1 = Undefined::kInt;
  EXPECT_TRUE(m1.Matches(1));
  EXPECT_FALSE(m1.Matches(2));
}

// Test that a matcher parameterized with an abstract class compiles.
TEST(MatcherTest, CanAcceptAbstractClass) { Matcher<const Undefined&> m = _; }

// Tests that matchers are copyable.
TEST(MatcherTest, IsCopyable) {
  // Tests the copy constructor.
  Matcher<bool> m1 = Eq(false);
  EXPECT_TRUE(m1.Matches(false));
  EXPECT_FALSE(m1.Matches(true));

  // Tests the assignment operator.
  m1 = Eq(true);
  EXPECT_TRUE(m1.Matches(true));
  EXPECT_FALSE(m1.Matches(false));
}

// Tests that Matcher<T>::DescribeTo() calls
// MatcherInterface<T>::DescribeTo().
TEST(MatcherTest, CanDescribeItself) {
  EXPECT_EQ("is an even number", Describe(Matcher<int>(new EvenMatcherImpl)));
}

// Tests Matcher<T>::MatchAndExplain().
TEST_P(MatcherTestP, MatchAndExplain) {
  Matcher<int> m = GreaterThan(0);
  StringMatchResultListener listener1;
  EXPECT_TRUE(m.MatchAndExplain(42, &listener1));
  EXPECT_EQ("which is 42 more than 0", listener1.str());

  StringMatchResultListener listener2;
  EXPECT_FALSE(m.MatchAndExplain(-9, &listener2));
  EXPECT_EQ("which is 9 less than 0", listener2.str());
}

// Tests that a C-string literal can be implicitly converted to a
// Matcher<std::string> or Matcher<const std::string&>.
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) {
  Matcher<std::string> m1 = "hi";
  EXPECT_TRUE(m1.Matches("hi"));
  EXPECT_FALSE(m1.Matches("hello"));

  Matcher<const std::string&> m2 = "hi";
  EXPECT_TRUE(m2.Matches("hi"));
  EXPECT_FALSE(m2.Matches("hello"));
}

// Tests that a string object can be implicitly converted to a
// Matcher<std::string> or Matcher<const std::string&>.
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromString) {
  Matcher<std::string> m1 = std::string("hi");
  EXPECT_TRUE(m1.Matches("hi"));
  EXPECT_FALSE(m1.Matches("hello"));

  Matcher<const std::string&> m2 = std::string("hi");
  EXPECT_TRUE(m2.Matches("hi"));
  EXPECT_FALSE(m2.Matches("hello"));
}

#if GTEST_INTERNAL_HAS_STRING_VIEW
// Tests that a C-string literal can be implicitly converted to a
// Matcher<StringView> or Matcher<const StringView&>.
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) {
  Matcher<internal::StringView> m1 = "cats";
  EXPECT_TRUE(m1.Matches("cats"));
  EXPECT_FALSE(m1.Matches("dogs"));

  Matcher<const internal::StringView&> m2 = "cats";
  EXPECT_TRUE(m2.Matches("cats"));
  EXPECT_FALSE(m2.Matches("dogs"));
}

// Tests that a std::string object can be implicitly converted to a
// Matcher<StringView> or Matcher<const StringView&>.
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromString) {
  Matcher<internal::StringView> m1 = std::string("cats");
  EXPECT_TRUE(m1.Matches("cats"));
  EXPECT_FALSE(m1.Matches("dogs"));

  Matcher<const internal::StringView&> m2 = std::string("cats");
  EXPECT_TRUE(m2.Matches("cats"));
  EXPECT_FALSE(m2.Matches("dogs"));
}

// Tests that a StringView object can be implicitly converted to a
// Matcher<StringView> or Matcher<const StringView&>.
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromStringView) {
  Matcher<internal::StringView> m1 = internal::StringView("cats");
  EXPECT_TRUE(m1.Matches("cats"));
  EXPECT_FALSE(m1.Matches("dogs"));

  Matcher<const internal::StringView&> m2 = internal::StringView("cats");
  EXPECT_TRUE(m2.Matches("cats"));
  EXPECT_FALSE(m2.Matches("dogs"));
}
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW

// Tests that a std::reference_wrapper<std::string> object can be implicitly
// converted to a Matcher<std::string> or Matcher<const std::string&> via Eq().
TEST(StringMatcherTest,
     CanBeImplicitlyConstructedFromEqReferenceWrapperString) {
  std::string value = "cats";
  Matcher<std::string> m1 = Eq(std::ref(value));
  EXPECT_TRUE(m1.Matches("cats"));
  EXPECT_FALSE(m1.Matches("dogs"));

  Matcher<const std::string&> m2 = Eq(std::ref(value));
  EXPECT_TRUE(m2.Matches("cats"));
  EXPECT_FALSE(m2.Matches("dogs"));
}

// Tests that MakeMatcher() constructs a Matcher<T> from a
// MatcherInterface* without requiring the user to explicitly
// write the type.
TEST(MakeMatcherTest, ConstructsMatcherFromMatcherInterface) {
  const MatcherInterface<int>* dummy_impl = new EvenMatcherImpl;
  Matcher<int> m = MakeMatcher(dummy_impl);
}

// Tests that MakePolymorphicMatcher() can construct a polymorphic
// matcher from its implementation using the old API.
const int g_bar = 1;
class ReferencesBarOrIsZeroImpl {
 public:
  template <typename T>
  bool MatchAndExplain(const T& x, MatchResultListener* /* listener */) const {
    const void* p = &x;
    return p == &g_bar || x == 0;
  }

  void DescribeTo(ostream* os) const { *os << "g_bar or zero"; }

  void DescribeNegationTo(ostream* os) const {
    *os << "doesn't reference g_bar and is not zero";
  }
};

// This function verifies that MakePolymorphicMatcher() returns a
// PolymorphicMatcher<T> where T is the argument's type.
PolymorphicMatcher<ReferencesBarOrIsZeroImpl> ReferencesBarOrIsZero() {
  return MakePolymorphicMatcher(ReferencesBarOrIsZeroImpl());
}

TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingOldAPI) {
  // Using a polymorphic matcher to match a reference type.
  Matcher<const int&> m1 = ReferencesBarOrIsZero();
  EXPECT_TRUE(m1.Matches(0));
  // Verifies that the identity of a by-reference argument is preserved.
  EXPECT_TRUE(m1.Matches(g_bar));
  EXPECT_FALSE(m1.Matches(1));
  EXPECT_EQ("g_bar or zero", Describe(m1));

  // Using a polymorphic matcher to match a value type.
  Matcher<double> m2 = ReferencesBarOrIsZero();
  EXPECT_TRUE(m2.Matches(0.0));
  EXPECT_FALSE(m2.Matches(0.1));
  EXPECT_EQ("g_bar or zero", Describe(m2));
}

// Tests implementing a polymorphic matcher using MatchAndExplain().

class PolymorphicIsEvenImpl {
 public:
  void DescribeTo(ostream* os) const { *os << "is even"; }

  void DescribeNegationTo(ostream* os) const { *os << "is odd"; }

  template <typename T>
  bool MatchAndExplain(const T& x, MatchResultListener* listener) const {
    // Verifies that we can stream to the listener directly.
    *listener << "% " << 2;
    if (listener->stream() != nullptr) {
      // Verifies that we can stream to the listener's underlying stream
      // too.
      *listener->stream() << " == " << (x % 2);
    }
    return (x % 2) == 0;
  }
};

PolymorphicMatcher<PolymorphicIsEvenImpl> PolymorphicIsEven() {
  return MakePolymorphicMatcher(PolymorphicIsEvenImpl());
}

TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingNewAPI) {
  // Using PolymorphicIsEven() as a Matcher<int>.
  const Matcher<int> m1 = PolymorphicIsEven();
  EXPECT_TRUE(m1.Matches(42));
  EXPECT_FALSE(m1.Matches(43));
  EXPECT_EQ("is even", Describe(m1));

  const Matcher<int> not_m1 = Not(m1);
  EXPECT_EQ("is odd", Describe(not_m1));

  EXPECT_EQ("% 2 == 0", Explain(m1, 42));

  // Using PolymorphicIsEven() as a Matcher<char>.
  const Matcher<char> m2 = PolymorphicIsEven();
  EXPECT_TRUE(m2.Matches('\x42'));
  EXPECT_FALSE(m2.Matches('\x43'));
  EXPECT_EQ("is even", Describe(m2));

  const Matcher<char> not_m2 = Not(m2);
  EXPECT_EQ("is odd", Describe(not_m2));

  EXPECT_EQ("% 2 == 0", Explain(m2, '\x42'));
}

INSTANTIATE_GTEST_MATCHER_TEST_P(MatcherCastTest);

// Tests that MatcherCast<T>(m) works when m is a polymorphic matcher.
TEST_P(MatcherCastTestP, FromPolymorphicMatcher) {
  Matcher<int16_t> m;
  if (use_gtest_matcher_) {
    m = MatcherCast<int16_t>(GtestGreaterThan(int64_t{5}));
  } else {
    m = MatcherCast<int16_t>(Gt(int64_t{5}));
  }
  EXPECT_TRUE(m.Matches(6));
  EXPECT_FALSE(m.Matches(4));
}

// For testing casting matchers between compatible types.
class IntValue {
 public:
  // An int can be statically (although not implicitly) cast to a
  // IntValue.
  explicit IntValue(int a_value) : value_(a_value) {}

  int value() const { return value_; }

 private:
  int value_;
};

// For testing casting matchers between compatible types.
bool IsPositiveIntValue(const IntValue& foo) { return foo.value() > 0; }

// Tests that MatcherCast<T>(m) works when m is a Matcher<U> where T
// can be statically converted to U.
TEST(MatcherCastTest, FromCompatibleType) {
  Matcher<double> m1 = Eq(2.0);
  Matcher<int> m2 = MatcherCast<int>(m1);
  EXPECT_TRUE(m2.Matches(2));
  EXPECT_FALSE(m2.Matches(3));

  Matcher<IntValue> m3 = Truly(IsPositiveIntValue);
  Matcher<int> m4 = MatcherCast<int>(m3);
  // In the following, the arguments 1 and 0 are statically converted
  // to IntValue objects, and then tested by the IsPositiveIntValue()
  // predicate.
  EXPECT_TRUE(m4.Matches(1));
  EXPECT_FALSE(m4.Matches(0));
}

// Tests that MatcherCast<T>(m) works when m is a Matcher<const T&>.
TEST(MatcherCastTest, FromConstReferenceToNonReference) {
  Matcher<const int&> m1 = Eq(0);
  Matcher<int> m2 = MatcherCast<int>(m1);
  EXPECT_TRUE(m2.Matches(0));
  EXPECT_FALSE(m2.Matches(1));
}

// Tests that MatcherCast<T>(m) works when m is a Matcher<T&>.
TEST(MatcherCastTest, FromReferenceToNonReference) {
  Matcher<int&> m1 = Eq(0);
  Matcher<int> m2 = MatcherCast<int>(m1);
  EXPECT_TRUE(m2.Matches(0));
  EXPECT_FALSE(m2.Matches(1));
}

// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
TEST(MatcherCastTest, FromNonReferenceToConstReference) {
  Matcher<int> m1 = Eq(0);
  Matcher<const int&> m2 = MatcherCast<const int&>(m1);
  EXPECT_TRUE(m2.Matches(0));
  EXPECT_FALSE(m2.Matches(1));
}

// Tests that MatcherCast<T&>(m) works when m is a Matcher<T>.
TEST(MatcherCastTest, FromNonReferenceToReference) {
  Matcher<int> m1 = Eq(0);
  Matcher<int&> m2 = MatcherCast<int&>(m1);
  int n = 0;
  EXPECT_TRUE(m2.Matches(n));
  n = 1;
  EXPECT_FALSE(m2.Matches(n));
}

// Tests that MatcherCast<T>(m) works when m is a Matcher<T>.
TEST(MatcherCastTest, FromSameType) {
  Matcher<int> m1 = Eq(0);
  Matcher<int> m2 = MatcherCast<int>(m1);
  EXPECT_TRUE(m2.Matches(0));
  EXPECT_FALSE(m2.Matches(1));
}

// Tests that MatcherCast<T>(m) works when m is a value of the same type as the
// value type of the Matcher.
TEST(MatcherCastTest, FromAValue) {
  Matcher<int> m = MatcherCast<int>(42);
  EXPECT_TRUE(m.Matches(42));
  EXPECT_FALSE(m.Matches(239));
}

// Tests that MatcherCast<T>(m) works when m is a value of the type implicitly
// convertible to the value type of the Matcher.
TEST(MatcherCastTest, FromAnImplicitlyConvertibleValue) {
  const int kExpected = 'c';
  Matcher<int> m = MatcherCast<int>('c');
  EXPECT_TRUE(m.Matches(kExpected));
  EXPECT_FALSE(m.Matches(kExpected + 1));
}

struct NonImplicitlyConstructibleTypeWithOperatorEq {
  friend bool operator==(
      const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */,
      int rhs) {
    return 42 == rhs;
  }
  friend bool operator==(
      int lhs,
      const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */) {
    return lhs == 42;
  }
};

// Tests that MatcherCast<T>(m) works when m is a neither a matcher nor
// implicitly convertible to the value type of the Matcher, but the value type
// of the matcher has operator==() overload accepting m.
TEST(MatcherCastTest, NonImplicitlyConstructibleTypeWithOperatorEq) {
  Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m1 =
      MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(42);
  EXPECT_TRUE(m1.Matches(NonImplicitlyConstructibleTypeWithOperatorEq()));

  Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m2 =
      MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(239);
  EXPECT_FALSE(m2.Matches(NonImplicitlyConstructibleTypeWithOperatorEq()));

  // When updating the following lines please also change the comment to
  // namespace convertible_from_any.
  Matcher<int> m3 =
      MatcherCast<int>(NonImplicitlyConstructibleTypeWithOperatorEq());
  EXPECT_TRUE(m3.Matches(42));
  EXPECT_FALSE(m3.Matches(239));
}

// ConvertibleFromAny does not work with MSVC. resulting in
// error C2440: 'initializing': cannot convert from 'Eq' to 'M'
// No constructor could take the source type, or constructor overload
// resolution was ambiguous

#if !defined _MSC_VER

// The below ConvertibleFromAny struct is implicitly constructible from anything
// and when in the same namespace can interact with other tests. In particular,
// if it is in the same namespace as other tests and one removes
//   NonImplicitlyConstructibleTypeWithOperatorEq::operator==(int lhs, ...);
// then the corresponding test still compiles (and it should not!) by implicitly
// converting NonImplicitlyConstructibleTypeWithOperatorEq to ConvertibleFromAny
// in m3.Matcher().
namespace convertible_from_any {
// Implicitly convertible from any type.
struct ConvertibleFromAny {
  ConvertibleFromAny(int a_value) : value(a_value) {}
  template <typename T>
  ConvertibleFromAny(const T& /*a_value*/) : value(-1) {
    ADD_FAILURE() << "Conversion constructor called";
  }
  int value;
};

bool operator==(const ConvertibleFromAny& a, const ConvertibleFromAny& b) {
  return a.value == b.value;
}

ostream& operator<<(ostream& os, const ConvertibleFromAny& a) {
  return os << a.value;
}

TEST(MatcherCastTest, ConversionConstructorIsUsed) {
  Matcher<ConvertibleFromAny> m = MatcherCast<ConvertibleFromAny>(1);
  EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
  EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}

TEST(MatcherCastTest, FromConvertibleFromAny) {
  Matcher<ConvertibleFromAny> m =
      MatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1)));
  EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
  EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}
}  // namespace convertible_from_any

#endif  // !defined _MSC_VER

struct IntReferenceWrapper {
  IntReferenceWrapper(const int& a_value) : value(&a_value) {}
  const int* value;
};

bool operator==(const IntReferenceWrapper& a, const IntReferenceWrapper& b) {
  return a.value == b.value;
}

TEST(MatcherCastTest, ValueIsNotCopied) {
  int n = 42;
  Matcher<IntReferenceWrapper> m = MatcherCast<IntReferenceWrapper>(n);
  // Verify that the matcher holds a reference to n, not to its temporary copy.
  EXPECT_TRUE(m.Matches(n));
}

class Base {
 public:
  virtual ~Base() = default;
  Base() = default;

 private:
  Base(const Base&) = delete;
  Base& operator=(const Base&) = delete;
};

class Derived : public Base {
 public:
  Derived() : Base() {}
  int i;
};

class OtherDerived : public Base {};

INSTANTIATE_GTEST_MATCHER_TEST_P(SafeMatcherCastTest);

// Tests that SafeMatcherCast<T>(m) works when m is a polymorphic matcher.
TEST_P(SafeMatcherCastTestP, FromPolymorphicMatcher) {
  Matcher<char> m2;
  if (use_gtest_matcher_) {
    m2 = SafeMatcherCast<char>(GtestGreaterThan(32));
  } else {
    m2 = SafeMatcherCast<char>(Gt(32));
  }
  EXPECT_TRUE(m2.Matches('A'));
  EXPECT_FALSE(m2.Matches('\n'));
}

// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where
// T and U are arithmetic types and T can be losslessly converted to
// U.
TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) {
  Matcher<double> m1 = DoubleEq(1.0);
  Matcher<float> m2 = SafeMatcherCast<float>(m1);
  EXPECT_TRUE(m2.Matches(1.0f));
  EXPECT_FALSE(m2.Matches(2.0f));

  Matcher<char> m3 = SafeMatcherCast<char>(TypedEq<int>('a'));
  EXPECT_TRUE(m3.Matches('a'));
  EXPECT_FALSE(m3.Matches('b'));
}

// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T and U
// are pointers or references to a derived and a base class, correspondingly.
TEST(SafeMatcherCastTest, FromBaseClass) {
  Derived d, d2;
  Matcher<Base*> m1 = Eq(&d);
  Matcher<Derived*> m2 = SafeMatcherCast<Derived*>(m1);
  EXPECT_TRUE(m2.Matches(&d));
  EXPECT_FALSE(m2.Matches(&d2));

  Matcher<Base&> m3 = Ref(d);
  Matcher<Derived&> m4 = SafeMatcherCast<Derived&>(m3);
  EXPECT_TRUE(m4.Matches(d));
  EXPECT_FALSE(m4.Matches(d2));
}

// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<const T&>.
TEST(SafeMatcherCastTest, FromConstReferenceToReference) {
  int n = 0;
  Matcher<const int&> m1 = Ref(n);
  Matcher<int&> m2 = SafeMatcherCast<int&>(m1);
  int n1 = 0;
  EXPECT_TRUE(m2.Matches(n));
  EXPECT_FALSE(m2.Matches(n1));
}

// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
TEST(SafeMatcherCastTest, FromNonReferenceToConstReference) {
  Matcher<std::unique_ptr<int>> m1 = IsNull();
  Matcher<const std::unique_ptr<int>&> m2 =
      SafeMatcherCast<const std::unique_ptr<int>&>(m1);
  EXPECT_TRUE(m2.Matches(std::unique_ptr<int>()));
  EXPECT_FALSE(m2.Matches(std::unique_ptr<int>(new int)));
}

// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<T>.
TEST(SafeMatcherCastTest, FromNonReferenceToReference) {
  Matcher<int> m1 = Eq(0);
  Matcher<int&> m2 = SafeMatcherCast<int&>(m1);
  int n = 0;
  EXPECT_TRUE(m2.Matches(n));
  n = 1;
  EXPECT_FALSE(m2.Matches(n));
}

// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<T>.
TEST(SafeMatcherCastTest, FromSameType) {
  Matcher<int> m1 = Eq(0);
  Matcher<int> m2 = SafeMatcherCast<int>(m1);
  EXPECT_TRUE(m2.Matches(0));
  EXPECT_FALSE(m2.Matches(1));
}

#if !defined _MSC_VER

namespace convertible_from_any {
TEST(SafeMatcherCastTest, ConversionConstructorIsUsed) {
  Matcher<ConvertibleFromAny> m = SafeMatcherCast<ConvertibleFromAny>(1);
  EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
  EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}

TEST(SafeMatcherCastTest, FromConvertibleFromAny) {
  Matcher<ConvertibleFromAny> m =
      SafeMatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1)));
  EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
  EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}
}  // namespace convertible_from_any

#endif  // !defined _MSC_VER

TEST(SafeMatcherCastTest, ValueIsNotCopied) {
  int n = 42;
  Matcher<IntReferenceWrapper> m = SafeMatcherCast<IntReferenceWrapper>(n);
  // Verify that the matcher holds a reference to n, not to its temporary copy.
  EXPECT_TRUE(m.Matches(n));
}

TEST(ExpectThat, TakesLiterals) {
  EXPECT_THAT(1, 1);
  EXPECT_THAT(1.0, 1.0);
  EXPECT_THAT(std::string(), "");
}

TEST(ExpectThat, TakesFunctions) {
  struct Helper {
    static void Func() {}
  };
  void (*func)() = Helper::Func;
  EXPECT_THAT(func, Helper::Func);
  EXPECT_THAT(func, &Helper::Func);
}

// Tests that A<T>() matches any value of type T.
TEST(ATest, MatchesAnyValue) {
  // Tests a matcher for a value type.
  Matcher<double> m1 = A<double>();
  EXPECT_TRUE(m1.Matches(91.43));
  EXPECT_TRUE(m1.Matches(-15.32));

  // Tests a matcher for a reference type.
  int a = 2;
  int b = -6;
  Matcher<int&> m2 = A<int&>();
  EXPECT_TRUE(m2.Matches(a));
  EXPECT_TRUE(m2.Matches(b));
}

TEST(ATest, WorksForDerivedClass) {
  Base base;
  Derived derived;
  EXPECT_THAT(&base, A<Base*>());
  // This shouldn't compile: EXPECT_THAT(&base, A<Derived*>());
  EXPECT_THAT(&derived, A<Base*>());
  EXPECT_THAT(&derived, A<Derived*>());
}

// Tests that A<T>() describes itself properly.
TEST(ATest, CanDescribeSelf) { EXPECT_EQ("is anything", Describe(A<bool>())); }

// Tests that An<T>() matches any value of type T.
TEST(AnTest, MatchesAnyValue) {
  // Tests a matcher for a value type.
  Matcher<int> m1 = An<int>();
  EXPECT_TRUE(m1.Matches(9143));
  EXPECT_TRUE(m1.Matches(-1532));

  // Tests a matcher for a reference type.
  int a = 2;
  int b = -6;
  Matcher<int&> m2 = An<int&>();
  EXPECT_TRUE(m2.Matches(a));
  EXPECT_TRUE(m2.Matches(b));
}

// Tests that An<T>() describes itself properly.
TEST(AnTest, CanDescribeSelf) { EXPECT_EQ("is anything", Describe(An<int>())); }

// Tests that _ can be used as a matcher for any type and matches any
// value of that type.
TEST(UnderscoreTest, MatchesAnyValue) {
  // Uses _ as a matcher for a value type.
  Matcher<int> m1 = _;
  EXPECT_TRUE(m1.Matches(123));
  EXPECT_TRUE(m1.Matches(-242));

  // Uses _ as a matcher for a reference type.
  bool a = false;
  const bool b = true;
  Matcher<const bool&> m2 = _;
  EXPECT_TRUE(m2.Matches(a));
  EXPECT_TRUE(m2.Matches(b));
}

// Tests that _ describes itself properly.
TEST(UnderscoreTest, CanDescribeSelf) {
  Matcher<int> m = _;
  EXPECT_EQ("is anything", Describe(m));
}

// Tests that Eq(x) matches any value equal to x.
TEST(EqTest, MatchesEqualValue) {
  // 2 C-strings with same content but different addresses.
  const char a1[] = "hi";
  const char a2[] = "hi";

  Matcher<const char*> m1 = Eq(a1);
  EXPECT_TRUE(m1.Matches(a1));
  EXPECT_FALSE(m1.Matches(a2));
}

// Tests that Eq(v) describes itself properly.

class Unprintable {
 public:
  Unprintable() : c_('a') {}

  bool operator==(const Unprintable& /* rhs */) const { return true; }
  // -Wunused-private-field: dummy accessor for `c_`.
  char dummy_c() { return c_; }

 private:
  char c_;
};

TEST(EqTest, CanDescribeSelf) {
  Matcher<Unprintable> m = Eq(Unprintable());
  EXPECT_EQ("is equal to 1-byte object <61>", Describe(m));
}

// Tests that Eq(v) can be used to match any type that supports
// comparing with type T, where T is v's type.
TEST(EqTest, IsPolymorphic) {
  Matcher<int> m1 = Eq(1);
  EXPECT_TRUE(m1.Matches(1));
  EXPECT_FALSE(m1.Matches(2));

  Matcher<char> m2 = Eq(1);
  EXPECT_TRUE(m2.Matches('\1'));
  EXPECT_FALSE(m2.Matches('a'));
}

// Tests that TypedEq<T>(v) matches values of type T that's equal to v.
TEST(TypedEqTest, ChecksEqualityForGivenType) {
  Matcher<char> m1 = TypedEq<char>('a');
  EXPECT_TRUE(m1.Matches('a'));
  EXPECT_FALSE(m1.Matches('b'));

  Matcher<int> m2 = TypedEq<int>(6);
  EXPECT_TRUE(m2.Matches(6));
  EXPECT_FALSE(m2.Matches(7));
}

// Tests that TypedEq(v) describes itself properly.
TEST(TypedEqTest, CanDescribeSelf) {
  EXPECT_EQ("is equal to 2", Describe(TypedEq<int>(2)));
}

// Tests that TypedEq<T>(v) has type Matcher<T>.

// Type<T>::IsTypeOf(v) compiles if and only if the type of value v is T, where
// T is a "bare" type (i.e. not in the form of const U or U&).  If v's type is
// not T, the compiler will generate a message about "undefined reference".
template <typename T>
struct Type {
  static bool IsTypeOf(const T& /* v */) { return true; }

  template <typename T2>
  static void IsTypeOf(T2 v);
};

TEST(TypedEqTest, HasSpecifiedType) {
  // Verifies that the type of TypedEq<T>(v) is Matcher<T>.
  Type<Matcher<int>>::IsTypeOf(TypedEq<int>(5));
  Type<Matcher<double>>::IsTypeOf(TypedEq<double>(5));
}

// Tests that Ge(v) matches anything >= v.
TEST(GeTest, ImplementsGreaterThanOrEqual) {
  Matcher<int> m1 = Ge(0);
  EXPECT_TRUE(m1.Matches(1));
  EXPECT_TRUE(m1.Matches(0));
  EXPECT_FALSE(m1.Matches(-1));
}

// Tests that Ge(v) describes itself properly.
TEST(GeTest, CanDescribeSelf) {
  Matcher<int> m = Ge(5);
  EXPECT_EQ("is >= 5", Describe(m));
}

// Tests that Gt(v) matches anything > v.
TEST(GtTest, ImplementsGreaterThan) {
  Matcher<double> m1 = Gt(0);
  EXPECT_TRUE(m1.Matches(1.0));
  EXPECT_FALSE(m1.Matches(0.0));
  EXPECT_FALSE(m1.Matches(-1.0));
}

// Tests that Gt(v) describes itself properly.
TEST(GtTest, CanDescribeSelf) {
  Matcher<int> m = Gt(5);
  EXPECT_EQ("is > 5", Describe(m));
}

// Tests that Le(v) matches anything <= v.
TEST(LeTest, ImplementsLessThanOrEqual) {
  Matcher<char> m1 = Le('b');
  EXPECT_TRUE(m1.Matches('a'));
  EXPECT_TRUE(m1.Matches('b'));
  EXPECT_FALSE(m1.Matches('c'));
}

// Tests that Le(v) describes itself properly.
TEST(LeTest, CanDescribeSelf) {
  Matcher<int> m = Le(5);
  EXPECT_EQ("is <= 5", Describe(m));
}

// Tests that Lt(v) matches anything < v.
TEST(LtTest, ImplementsLessThan) {
  Matcher<const std::string&> m1 = Lt("Hello");
  EXPECT_TRUE(m1.Matches("Abc"));
  EXPECT_FALSE(m1.Matches("Hello"));
  EXPECT_FALSE(m1.Matches("Hello, world!"));
}

// Tests that Lt(v) describes itself properly.
TEST(LtTest, CanDescribeSelf) {
  Matcher<int> m = Lt(5);
  EXPECT_EQ("is < 5", Describe(m));
}

// Tests that Ne(v) matches anything != v.
TEST(NeTest, ImplementsNotEqual) {
  Matcher<int> m1 = Ne(0);
  EXPECT_TRUE(m1.Matches(1));
  EXPECT_TRUE(m1.Matches(-1));
  EXPECT_FALSE(m1.Matches(0));
}

// Tests that Ne(v) describes itself properly.
TEST(NeTest, CanDescribeSelf) {
  Matcher<int> m = Ne(5);
  EXPECT_EQ("isn't equal to 5", Describe(m));
}

class MoveOnly {
 public:
  explicit MoveOnly(int i) : i_(i) {}
  MoveOnly(const MoveOnly&) = delete;
  MoveOnly(MoveOnly&&) = default;
  MoveOnly& operator=(const MoveOnly&) = delete;
  MoveOnly& operator=(MoveOnly&&) = default;

  bool operator==(const MoveOnly& other) const { return i_ == other.i_; }
  bool operator!=(const MoveOnly& other) const { return i_ != other.i_; }
  bool operator<(const MoveOnly& other) const { return i_ < other.i_; }
  bool operator<=(const MoveOnly& other) const { return i_ <= other.i_; }
  bool operator>(const MoveOnly& other) const { return i_ > other.i_; }
  bool operator>=(const MoveOnly& other) const { return i_ >= other.i_; }

 private:
  int i_;
};

struct MoveHelper {
  MOCK_METHOD1(Call, void(MoveOnly));
};

// Disable this test in VS 2015 (version 14), where it fails when SEH is enabled
#if defined(_MSC_VER) && (_MSC_VER < 1910)
TEST(ComparisonBaseTest, DISABLED_WorksWithMoveOnly) {
#else
TEST(ComparisonBaseTest, WorksWithMoveOnly) {
#endif
  MoveOnly m{0};
  MoveHelper helper;

  EXPECT_CALL(helper, Call(Eq(ByRef(m))));
  helper.Call(MoveOnly(0));
  EXPECT_CALL(helper, Call(Ne(ByRef(m))));
  helper.Call(MoveOnly(1));
  EXPECT_CALL(helper, Call(Le(ByRef(m))));
  helper.Call(MoveOnly(0));
  EXPECT_CALL(helper, Call(Lt(ByRef(m))));
  helper.Call(MoveOnly(-1));
  EXPECT_CALL(helper, Call(Ge(ByRef(m))));
  helper.Call(MoveOnly(0));
  EXPECT_CALL(helper, Call(Gt(ByRef(m))));
  helper.Call(MoveOnly(1));
}

TEST(IsEmptyTest, MatchesContainer) {
  const Matcher<std::vector<int>> m = IsEmpty();
  std::vector<int> a = {};
  std::vector<int> b = {1};
  EXPECT_TRUE(m.Matches(a));
  EXPECT_FALSE(m.Matches(b));
}

TEST(IsEmptyTest, MatchesStdString) {
  const Matcher<std::string> m = IsEmpty();
  std::string a = "z";
  std::string b = "";
  EXPECT_FALSE(m.Matches(a));
  EXPECT_TRUE(m.Matches(b));
}

TEST(IsEmptyTest, MatchesCString) {
  const Matcher<const char*> m = IsEmpty();
  const char a[] = "";
  const char b[] = "x";
  EXPECT_TRUE(m.Matches(a));
  EXPECT_FALSE(m.Matches(b));
}

// Tests that IsNull() matches any NULL pointer of any type.
TEST(IsNullTest, MatchesNullPointer) {
  Matcher<int*> m1 = IsNull();
  int* p1 = nullptr;
  int n = 0;
  EXPECT_TRUE(m1.Matches(p1));
  EXPECT_FALSE(m1.Matches(&n));

  Matcher<const char*> m2 = IsNull();
  const char* p2 = nullptr;
  EXPECT_TRUE(m2.Matches(p2));
  EXPECT_FALSE(m2.Matches("hi"));

  Matcher<void*> m3 = IsNull();
  void* p3 = nullptr;
  EXPECT_TRUE(m3.Matches(p3));
  EXPECT_FALSE(m3.Matches(reinterpret_cast<void*>(0xbeef)));
}

TEST(IsNullTest, StdFunction) {
  const Matcher<std::function<void()>> m = IsNull();

  EXPECT_TRUE(m.Matches(std::function<void()>()));
  EXPECT_FALSE(m.Matches([] {}));
}

// Tests that IsNull() describes itself properly.
TEST(IsNullTest, CanDescribeSelf) {
  Matcher<int*> m = IsNull();
  EXPECT_EQ("is NULL", Describe(m));
  EXPECT_EQ("isn't NULL", DescribeNegation(m));
}

// Tests that NotNull() matches any non-NULL pointer of any type.
TEST(NotNullTest, MatchesNonNullPointer) {
  Matcher<int*> m1 = NotNull();
  int* p1 = nullptr;
  int n = 0;
  EXPECT_FALSE(m1.Matches(p1));
  EXPECT_TRUE(m1.Matches(&n));

  Matcher<const char*> m2 = NotNull();
  const char* p2 = nullptr;
  EXPECT_FALSE(m2.Matches(p2));
  EXPECT_TRUE(m2.Matches("hi"));
}

TEST(NotNullTest, LinkedPtr) {
  const Matcher<std::shared_ptr<int>> m = NotNull();
  const std::shared_ptr<int> null_p;
  const std::shared_ptr<int> non_null_p(new int);

  EXPECT_FALSE(m.Matches(null_p));
  EXPECT_TRUE(m.Matches(non_null_p));
}

TEST(NotNullTest, ReferenceToConstLinkedPtr) {
  const Matcher<const std::shared_ptr<double>&> m = NotNull();
  const std::shared_ptr<double> null_p;
  const std::shared_ptr<double> non_null_p(new double);

  EXPECT_FALSE(m.Matches(null_p));
  EXPECT_TRUE(m.Matches(non_null_p));
}

TEST(NotNullTest, StdFunction) {
  const Matcher<std::function<void()>> m = NotNull();

  EXPECT_TRUE(m.Matches([] {}));
  EXPECT_FALSE(m.Matches(std::function<void()>()));
}

// Tests that NotNull() describes itself properly.
TEST(NotNullTest, CanDescribeSelf) {
  Matcher<int*> m = NotNull();
  EXPECT_EQ("isn't NULL", Describe(m));
}

// Tests that Ref(variable) matches an argument that references
// 'variable'.
TEST(RefTest, MatchesSameVariable) {
  int a = 0;
  int b = 0;
  Matcher<int&> m = Ref(a);
  EXPECT_TRUE(m.Matches(a));
  EXPECT_FALSE(m.Matches(b));
}

// Tests that Ref(variable) describes itself properly.
TEST(RefTest, CanDescribeSelf) {
  int n = 5;
  Matcher<int&> m = Ref(n);
  stringstream ss;
  ss << "references the variable @" << &n << " 5";
  EXPECT_EQ(ss.str(), Describe(m));
}

// Test that Ref(non_const_varialbe) can be used as a matcher for a
// const reference.
TEST(RefTest, CanBeUsedAsMatcherForConstReference) {
  int a = 0;
  int b = 0;
  Matcher<const int&> m = Ref(a);
  EXPECT_TRUE(m.Matches(a));
  EXPECT_FALSE(m.Matches(b));
}

// Tests that Ref(variable) is covariant, i.e. Ref(derived) can be
// used wherever Ref(base) can be used (Ref(derived) is a sub-type
// of Ref(base), but not vice versa.

TEST(RefTest, IsCovariant) {
  Base base, base2;
  Derived derived;
  Matcher<const Base&> m1 = Ref(base);
  EXPECT_TRUE(m1.Matches(base));
  EXPECT_FALSE(m1.Matches(base2));
  EXPECT_FALSE(m1.Matches(derived));

  m1 = Ref(derived);
  EXPECT_TRUE(m1.Matches(derived));
  EXPECT_FALSE(m1.Matches(base));
  EXPECT_FALSE(m1.Matches(base2));
}

TEST(RefTest, ExplainsResult) {
  int n = 0;
  EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), n),
              StartsWith("which is located @"));

  int m = 0;
  EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), m),
              StartsWith("which is located @"));
}

// Tests string comparison matchers.

template <typename T = std::string>
std::string FromStringLike(internal::StringLike<T> str) {
  return std::string(str);
}

TEST(StringLike, TestConversions) {
  EXPECT_EQ("foo", FromStringLike("foo"));
  EXPECT_EQ("foo", FromStringLike(std::string("foo")));
#if GTEST_INTERNAL_HAS_STRING_VIEW
  EXPECT_EQ("foo", FromStringLike(internal::StringView("foo")));
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW

  // Non deducible types.
  EXPECT_EQ("", FromStringLike({}));
  EXPECT_EQ("foo", FromStringLike({'f', 'o', 'o'}));
  const char buf[] = "foo";
  EXPECT_EQ("foo", FromStringLike({buf, buf + 3}));
}

TEST(StrEqTest, MatchesEqualString) {
  Matcher<const char*> m = StrEq(std::string("Hello"));
  EXPECT_TRUE(m.Matches("Hello"));
  EXPECT_FALSE(m.Matches("hello"));
  EXPECT_FALSE(m.Matches(nullptr));

  Matcher<const std::string&> m2 = StrEq("Hello");
  EXPECT_TRUE(m2.Matches("Hello"));
  EXPECT_FALSE(m2.Matches("Hi"));

#if GTEST_INTERNAL_HAS_STRING_VIEW
  Matcher<const internal::StringView&> m3 =
      StrEq(internal::StringView("Hello"));
  EXPECT_TRUE(m3.Matches(internal::StringView("Hello")));
  EXPECT_FALSE(m3.Matches(internal::StringView("hello")));
  EXPECT_FALSE(m3.Matches(internal::StringView()));

  Matcher<const internal::StringView&> m_empty = StrEq("");
  EXPECT_TRUE(m_empty.Matches(internal::StringView("")));
  EXPECT_TRUE(m_empty.Matches(internal::StringView()));
  EXPECT_FALSE(m_empty.Matches(internal::StringView("hello")));
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
}

TEST(StrEqTest, CanDescribeSelf) {
  Matcher<std::string> m = StrEq("Hi-\'\"?\\\a\b\f\n\r\t\v\xD3");
  EXPECT_EQ("is equal to \"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\xD3\"",
            Describe(m));

  std::string str("01204500800");
  str[3] = '\0';
  Matcher<std::string> m2 = StrEq(str);
  EXPECT_EQ("is equal to \"012\\04500800\"", Describe(m2));
  str[0] = str[6] = str[7] = str[9] = str[10] = '\0';
  Matcher<std::string> m3 = StrEq(str);
  EXPECT_EQ("is equal to \"\\012\\045\\0\\08\\0\\0\"", Describe(m3));
}

TEST(StrNeTest, MatchesUnequalString) {
  Matcher<const char*> m = StrNe("Hello");
  EXPECT_TRUE(m.Matches(""));
  EXPECT_TRUE(m.Matches(nullptr));
  EXPECT_FALSE(m.Matches("Hello"));

  Matcher<std::string> m2 = StrNe(std::string("Hello"));
  EXPECT_TRUE(m2.Matches("hello"));
  EXPECT_FALSE(m2.Matches("Hello"));

#if GTEST_INTERNAL_HAS_STRING_VIEW
  Matcher<const internal::StringView> m3 = StrNe(internal::StringView("Hello"));
  EXPECT_TRUE(m3.Matches(internal::StringView("")));
  EXPECT_TRUE(m3.Matches(internal::StringView()));
  EXPECT_FALSE(m3.Matches(internal::StringView("Hello")));
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
}

TEST(StrNeTest, CanDescribeSelf) {
  Matcher<const char*> m = StrNe("Hi");
  EXPECT_EQ("isn't equal to \"Hi\"", Describe(m));
}

TEST(StrCaseEqTest, MatchesEqualStringIgnoringCase) {
  Matcher<const char*> m = StrCaseEq(std::string("Hello"));
  EXPECT_TRUE(m.Matches("Hello"));
  EXPECT_TRUE(m.Matches("hello"));
  EXPECT_FALSE(m.Matches("Hi"));
  EXPECT_FALSE(m.Matches(nullptr));

  Matcher<const std::string&> m2 = StrCaseEq("Hello");
  EXPECT_TRUE(m2.Matches("hello"));
  EXPECT_FALSE(m2.Matches("Hi"));

#if GTEST_INTERNAL_HAS_STRING_VIEW
  Matcher<const internal::StringView&> m3 =
      StrCaseEq(internal::StringView("Hello"));
  EXPECT_TRUE(m3.Matches(internal::StringView("Hello")));
  EXPECT_TRUE(m3.Matches(internal::StringView("hello")));
  EXPECT_FALSE(m3.Matches(internal::StringView("Hi")));
  EXPECT_FALSE(m3.Matches(internal::StringView()));
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
}

TEST(StrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
  std::string str1("oabocdooeoo");
  std::string str2("OABOCDOOEOO");
  Matcher<const std::string&> m0 = StrCaseEq(str1);
  EXPECT_FALSE(m0.Matches(str2 + std::string(1, '\0')));

  str1[3] = str2[3] = '\0';
  Matcher<const std::string&> m1 = StrCaseEq(str1);
  EXPECT_TRUE(m1.Matches(str2));

  str1[0] = str1[6] = str1[7] = str1[10] = '\0';
  str2[0] = str2[6] = str2[7] = str2[10] = '\0';
  Matcher<const std::string&> m2 = StrCaseEq(str1);
  str1[9] = str2[9] = '\0';
  EXPECT_FALSE(m2.Matches(str2));

  Matcher<const std::string&> m3 = StrCaseEq(str1);
  EXPECT_TRUE(m3.Matches(str2));

  EXPECT_FALSE(m3.Matches(str2 + "x"));
  str2.append(1, '\0');
  EXPECT_FALSE(m3.Matches(str2));
  EXPECT_FALSE(m3.Matches(std::string(str2, 0, 9)));
}

TEST(StrCaseEqTest, CanDescribeSelf) {
  Matcher<std::string> m = StrCaseEq("Hi");
  EXPECT_EQ("is equal to (ignoring case) \"Hi\"", Describe(m));
}

TEST(StrCaseNeTest, MatchesUnequalStringIgnoringCase) {
  Matcher<const char*> m = StrCaseNe("Hello");
  EXPECT_TRUE(m.Matches("Hi"));
  EXPECT_TRUE(m.Matches(nullptr));
  EXPECT_FALSE(m.Matches("Hello"));
  EXPECT_FALSE(m.Matches("hello"));

  Matcher<std::string> m2 = StrCaseNe(std::string("Hello"));
  EXPECT_TRUE(m2.Matches(""));
  EXPECT_FALSE(m2.Matches("Hello"));

#if GTEST_INTERNAL_HAS_STRING_VIEW
  Matcher<const internal::StringView> m3 =
      StrCaseNe(internal::StringView("Hello"));
  EXPECT_TRUE(m3.Matches(internal::StringView("Hi")));
  EXPECT_TRUE(m3.Matches(internal::StringView()));
  EXPECT_FALSE(m3.Matches(internal::StringView("Hello")));
  EXPECT_FALSE(m3.Matches(internal::StringView("hello")));
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
}

TEST(StrCaseNeTest, CanDescribeSelf) {
  Matcher<const char*> m = StrCaseNe("Hi");
  EXPECT_EQ("isn't equal to (ignoring case) \"Hi\"", Describe(m));
}

// Tests that HasSubstr() works for matching string-typed values.
TEST(HasSubstrTest, WorksForStringClasses) {
  const Matcher<std::string> m1 = HasSubstr("foo");
  EXPECT_TRUE(m1.Matches(std::string("I love food.")));
  EXPECT_FALSE(m1.Matches(std::string("tofo")));

  const Matcher<const std::string&> m2 = HasSubstr("foo");
  EXPECT_TRUE(m2.Matches(std::string("I love food.")));
  EXPECT_FALSE(m2.Matches(std::string("tofo")));

  const Matcher<std::string> m_empty = HasSubstr("");
  EXPECT_TRUE(m_empty.Matches(std::string()));
  EXPECT_TRUE(m_empty.Matches(std::string("not empty")));
}

// Tests that HasSubstr() works for matching C-string-typed values.
TEST(HasSubstrTest, WorksForCStrings) {
  const Matcher<char*> m1 = HasSubstr("foo");
  EXPECT_TRUE(m1.Matches(const_cast<char*>("I love food.")));
  EXPECT_FALSE(m1.Matches(const_cast<char*>("tofo")));
  EXPECT_FALSE(m1.Matches(nullptr));

  const Matcher<const char*> m2 = HasSubstr("foo");
  EXPECT_TRUE(m2.Matches("I love food."));
  EXPECT_FALSE(m2.Matches("tofo"));
  EXPECT_FALSE(m2.Matches(nullptr));

  const Matcher<const char*> m_empty = HasSubstr("");
  EXPECT_TRUE(m_empty.Matches("not empty"));
  EXPECT_TRUE(m_empty.Matches(""));
  EXPECT_FALSE(m_empty.Matches(nullptr));
}

#if GTEST_INTERNAL_HAS_STRING_VIEW
// Tests that HasSubstr() works for matching StringView-typed values.
TEST(HasSubstrTest, WorksForStringViewClasses) {
  const Matcher<internal::StringView> m1 =
      HasSubstr(internal::StringView("foo"));
  EXPECT_TRUE(m1.Matches(internal::StringView("I love food.")));
  EXPECT_FALSE(m1.Matches(internal::StringView("tofo")));
  EXPECT_FALSE(m1.Matches(internal::StringView()));

  const Matcher<const internal::StringView&> m2 = HasSubstr("foo");
  EXPECT_TRUE(m2.Matches(internal::StringView("I love food.")));
  EXPECT_FALSE(m2.Matches(internal::StringView("tofo")));
  EXPECT_FALSE(m2.Matches(internal::StringView()));

  const Matcher<const internal::StringView&> m3 = HasSubstr("");
  EXPECT_TRUE(m3.Matches(internal::StringView("foo")));
  EXPECT_TRUE(m3.Matches(internal::StringView("")));
  EXPECT_TRUE(m3.Matches(internal::StringView()));
}
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW

// Tests that HasSubstr(s) describes itself properly.
TEST(HasSubstrTest, CanDescribeSelf) {
  Matcher<std::string> m = HasSubstr("foo\n\"");
  EXPECT_EQ("has substring \"foo\\n\\\"\"", Describe(m));
}

INSTANTIATE_GTEST_MATCHER_TEST_P(KeyTest);

TEST(KeyTest, CanDescribeSelf) {
  Matcher<const pair<std::string, int>&> m = Key("foo");
  EXPECT_EQ("has a key that is equal to \"foo\"", Describe(m));
  EXPECT_EQ("doesn't have a key that is equal to \"foo\"", DescribeNegation(m));
}

TEST_P(KeyTestP, ExplainsResult) {
  Matcher<pair<int, bool>> m = Key(GreaterThan(10));
  EXPECT_EQ("whose first field is a value which is 5 less than 10",
            Explain(m, make_pair(5, true)));
  EXPECT_EQ("whose first field is a value which is 5 more than 10",
            Explain(m, make_pair(15, true)));
}

TEST(KeyTest, MatchesCorrectly) {
  pair<int, std::string> p(25, "foo");
  EXPECT_THAT(p, Key(25));
  EXPECT_THAT(p, Not(Key(42)));
  EXPECT_THAT(p, Key(Ge(20)));
  EXPECT_THAT(p, Not(Key(Lt(25))));
}

TEST(KeyTest, WorksWithMoveOnly) {
  pair<std::unique_ptr<int>, std::unique_ptr<int>> p;
  EXPECT_THAT(p, Key(Eq(nullptr)));
}

INSTANTIATE_GTEST_MATCHER_TEST_P(PairTest);

template <size_t I>
struct Tag {};

struct PairWithGet {
  int member_1;
  std::string member_2;
  using first_type = int;
  using second_type = std::string;

  const int& GetImpl(Tag<0>) const { return member_1; }
  const std::string& GetImpl(Tag<1>) const { return member_2; }
};
template <size_t I>
auto get(const PairWithGet& value) -> decltype(value.GetImpl(Tag<I>())) {
  return value.GetImpl(Tag<I>());
}
TEST(PairTest, MatchesPairWithGetCorrectly) {
  PairWithGet p{25, "foo"};
  EXPECT_THAT(p, Key(25));
  EXPECT_THAT(p, Not(Key(42)));
  EXPECT_THAT(p, Key(Ge(20)));
  EXPECT_THAT(p, Not(Key(Lt(25))));

  std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}};
  EXPECT_THAT(v, Contains(Key(29)));
}

TEST(KeyTest, SafelyCastsInnerMatcher) {
  Matcher<int> is_positive = Gt(0);
  Matcher<int> is_negative = Lt(0);
  pair<char, bool> p('a', true);
  EXPECT_THAT(p, Key(is_positive));
  EXPECT_THAT(p, Not(Key(is_negative)));
}

TEST(KeyTest, InsideContainsUsingMap) {
  map<int, char> container;
  container.insert(make_pair(1, 'a'));
  container.insert(make_pair(2, 'b'));
  container.insert(make_pair(4, 'c'));
  EXPECT_THAT(container, Contains(Key(1)));
  EXPECT_THAT(container, Not(Contains(Key(3))));
}

TEST(KeyTest, InsideContainsUsingMultimap) {
  multimap<int, char> container;
  container.insert(make_pair(1, 'a'));
  container.insert(make_pair(2, 'b'));
  container.insert(make_pair(4, 'c'));

  EXPECT_THAT(container, Not(Contains(Key(25))));
  container.insert(make_pair(25, 'd'));
  EXPECT_THAT(container, Contains(Key(25)));
  container.insert(make_pair(25, 'e'));
  EXPECT_THAT(container, Contains(Key(25)));

  EXPECT_THAT(container, Contains(Key(1)));
  EXPECT_THAT(container, Not(Contains(Key(3))));
}

TEST(PairTest, Typing) {
  // Test verifies the following type conversions can be compiled.
  Matcher<const pair<const char*, int>&> m1 = Pair("foo", 42);
  Matcher<const pair<const char*, int>> m2 = Pair("foo", 42);
  Matcher<pair<const char*, int>> m3 = Pair("foo", 42);

  Matcher<pair<int, const std::string>> m4 = Pair(25, "42");
  Matcher<pair<const std::string, int>> m5 = Pair("25", 42);
}

TEST(PairTest, CanDescribeSelf) {
  Matcher<const pair<std::string, int>&> m1 = Pair("foo", 42);
  EXPECT_EQ(
      "has a first field that is equal to \"foo\""
      ", and has a second field that is equal to 42",
      Describe(m1));
  EXPECT_EQ(
      "has a first field that isn't equal to \"foo\""
      ", or has a second field that isn't equal to 42",
      DescribeNegation(m1));
  // Double and triple negation (1 or 2 times not and description of negation).
  Matcher<const pair<int, int>&> m2 = Not(Pair(Not(13), 42));
  EXPECT_EQ(
      "has a first field that isn't equal to 13"
      ", and has a second field that is equal to 42",
      DescribeNegation(m2));
}

TEST_P(PairTestP, CanExplainMatchResultTo) {
  // If neither field matches, Pair() should explain about the first
  // field.
  const Matcher<pair<int, int>> m = Pair(GreaterThan(0), GreaterThan(0));
  EXPECT_EQ("whose first field does not match, which is 1 less than 0",
            Explain(m, make_pair(-1, -2)));

  // If the first field matches but the second doesn't, Pair() should
  // explain about the second field.
  EXPECT_EQ("whose second field does not match, which is 2 less than 0",
            Explain(m, make_pair(1, -2)));

  // If the first field doesn't match but the second does, Pair()
  // should explain about the first field.
  EXPECT_EQ("whose first field does not match, which is 1 less than 0",
            Explain(m, make_pair(-1, 2)));

  // If both fields match, Pair() should explain about them both.
  EXPECT_EQ(
      "whose both fields match, where the first field is a value "
      "which is 1 more than 0, and the second field is a value "
      "which is 2 more than 0",
      Explain(m, make_pair(1, 2)));

  // If only the first match has an explanation, only this explanation should
  // be printed.
  const Matcher<pair<int, int>> explain_first = Pair(GreaterThan(0), 0);
  EXPECT_EQ(
      "whose both fields match, where the first field is a value "
      "which is 1 more than 0",
      Explain(explain_first, make_pair(1, 0)));

  // If only the second match has an explanation, only this explanation should
  // be printed.
  const Matcher<pair<int, int>> explain_second = Pair(0, GreaterThan(0));
  EXPECT_EQ(
      "whose both fields match, where the second field is a value "
      "which is 1 more than 0",
      Explain(explain_second, make_pair(0, 1)));
}

TEST(PairTest, MatchesCorrectly) {
  pair<int, std::string> p(25, "foo");

  // Both fields match.
  EXPECT_THAT(p, Pair(25, "foo"));
  EXPECT_THAT(p, Pair(Ge(20), HasSubstr("o")));

  // 'first' doesn't match, but 'second' matches.
  EXPECT_THAT(p, Not(Pair(42, "foo")));
  EXPECT_THAT(p, Not(Pair(Lt(25), "foo")));

  // 'first' matches, but 'second' doesn't match.
  EXPECT_THAT(p, Not(Pair(25, "bar")));
  EXPECT_THAT(p, Not(Pair(25, Not("foo"))));

  // Neither field matches.
  EXPECT_THAT(p, Not(Pair(13, "bar")));
  EXPECT_THAT(p, Not(Pair(Lt(13), HasSubstr("a"))));
}

TEST(PairTest, WorksWithMoveOnly) {
  pair<std::unique_ptr<int>, std::unique_ptr<int>> p;
  p.second = std::make_unique<int>(7);
  EXPECT_THAT(p, Pair(Eq(nullptr), Ne(nullptr)));
}

TEST(PairTest, SafelyCastsInnerMatchers) {
  Matcher<int> is_positive = Gt(0);
  Matcher<int> is_negative = Lt(0);
  pair<char, bool> p('a', true);
  EXPECT_THAT(p, Pair(is_positive, _));
  EXPECT_THAT(p, Not(Pair(is_negative, _)));
  EXPECT_THAT(p, Pair(_, is_positive));
  EXPECT_THAT(p, Not(Pair(_, is_negative)));
}

TEST(PairTest, InsideContainsUsingMap) {
  map<int, char> container;
  container.insert(make_pair(1, 'a'));
  container.insert(make_pair(2, 'b'));
  container.insert(make_pair(4, 'c'));
  EXPECT_THAT(container, Contains(Pair(1, 'a')));
  EXPECT_THAT(container, Contains(Pair(1, _)));
  EXPECT_THAT(container, Contains(Pair(_, 'a')));
  EXPECT_THAT(container, Not(Contains(Pair(3, _))));
}

INSTANTIATE_GTEST_MATCHER_TEST_P(FieldsAreTest);

TEST(FieldsAreTest, MatchesCorrectly) {
  std::tuple<int, std::string, double> p(25, "foo", .5);

  // All fields match.
  EXPECT_THAT(p, FieldsAre(25, "foo", .5));
  EXPECT_THAT(p, FieldsAre(Ge(20), HasSubstr("o"), DoubleEq(.5)));

  // Some don't match.
  EXPECT_THAT(p, Not(FieldsAre(26, "foo", .5)));
  EXPECT_THAT(p, Not(FieldsAre(25, "fo", .5)));
  EXPECT_THAT(p, Not(FieldsAre(25, "foo", .6)));
}

TEST(FieldsAreTest, CanDescribeSelf) {
  Matcher<const pair<std::string, int>&> m1 = FieldsAre("foo", 42);
  EXPECT_EQ(
      "has field #0 that is equal to \"foo\""
      ", and has field #1 that is equal to 42",
      Describe(m1));
  EXPECT_EQ(
      "has field #0 that isn't equal to \"foo\""
      ", or has field #1 that isn't equal to 42",
      DescribeNegation(m1));
}

TEST_P(FieldsAreTestP, CanExplainMatchResultTo) {
  // The first one that fails is the one that gives the error.
  Matcher<std::tuple<int, int, int>> m =
      FieldsAre(GreaterThan(0), GreaterThan(0), GreaterThan(0));

  EXPECT_EQ("whose field #0 does not match, which is 1 less than 0",
            Explain(m, std::make_tuple(-1, -2, -3)));
  EXPECT_EQ("whose field #1 does not match, which is 2 less than 0",
            Explain(m, std::make_tuple(1, -2, -3)));
  EXPECT_EQ("whose field #2 does not match, which is 3 less than 0",
            Explain(m, std::make_tuple(1, 2, -3)));

  // If they all match, we get a long explanation of success.
  EXPECT_EQ(
      "whose all elements match, "
      "where field #0 is a value which is 1 more than 0"
      ", and field #1 is a value which is 2 more than 0"
      ", and field #2 is a value which is 3 more than 0",
      Explain(m, std::make_tuple(1, 2, 3)));

  // Only print those that have an explanation.
  m = FieldsAre(GreaterThan(0), 0, GreaterThan(0));
  EXPECT_EQ(
      "whose all elements match, "
      "where field #0 is a value which is 1 more than 0"
      ", and field #2 is a value which is 3 more than 0",
      Explain(m, std::make_tuple(1, 0, 3)));

  // If only one has an explanation, then print that one.
  m = FieldsAre(0, GreaterThan(0), 0);
  EXPECT_EQ(
      "whose all elements match, "
      "where field #1 is a value which is 1 more than 0",
      Explain(m, std::make_tuple(0, 1, 0)));
}

#if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
TEST(FieldsAreTest, StructuredBindings) {
  // testing::FieldsAre can also match aggregates and such with C++17 and up.
  struct MyType {
    int i;
    std::string str;
  };
  EXPECT_THAT((MyType{17, "foo"}), FieldsAre(Eq(17), HasSubstr("oo")));

  // Test all the supported arities.
  struct MyVarType1 {
    int a;
  };
  EXPECT_THAT(MyVarType1{}, FieldsAre(0));
  struct MyVarType2 {
    int a, b;
  };
  EXPECT_THAT(MyVarType2{}, FieldsAre(0, 0));
  struct MyVarType3 {
    int a, b, c;
  };
  EXPECT_THAT(MyVarType3{}, FieldsAre(0, 0, 0));
  struct MyVarType4 {
    int a, b, c, d;
  };
  EXPECT_THAT(MyVarType4{}, FieldsAre(0, 0, 0, 0));
  struct MyVarType5 {
    int a, b, c, d, e;
  };
  EXPECT_THAT(MyVarType5{}, FieldsAre(0, 0, 0, 0, 0));
  struct MyVarType6 {
    int a, b, c, d, e, f;
  };
  EXPECT_THAT(MyVarType6{}, FieldsAre(0, 0, 0, 0, 0, 0));
  struct MyVarType7 {
    int a, b, c, d, e, f, g;
  };
  EXPECT_THAT(MyVarType7{}, FieldsAre(0, 0, 0, 0, 0, 0, 0));
  struct MyVarType8 {
    int a, b, c, d, e, f, g, h;
  };
  EXPECT_THAT(MyVarType8{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0));
  struct MyVarType9 {
    int a, b, c, d, e, f, g, h, i;
  };
  EXPECT_THAT(MyVarType9{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0));
  struct MyVarType10 {
    int a, b, c, d, e, f, g, h, i, j;
  };
  EXPECT_THAT(MyVarType10{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
  struct MyVarType11 {
    int a, b, c, d, e, f, g, h, i, j, k;
  };
  EXPECT_THAT(MyVarType11{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
  struct MyVarType12 {
    int a, b, c, d, e, f, g, h, i, j, k, l;
  };
  EXPECT_THAT(MyVarType12{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
  struct MyVarType13 {
    int a, b, c, d, e, f, g, h, i, j, k, l, m;
  };
  EXPECT_THAT(MyVarType13{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
  struct MyVarType14 {
    int a, b, c, d, e, f, g, h, i, j, k, l, m, n;
  };
  EXPECT_THAT(MyVarType14{},
              FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
  struct MyVarType15 {
    int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o;
  };
  EXPECT_THAT(MyVarType15{},
              FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
  struct MyVarType16 {
    int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p;
  };
  EXPECT_THAT(MyVarType16{},
              FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
  struct MyVarType17 {
    int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q;
  };
  EXPECT_THAT(MyVarType17{},
              FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
  struct MyVarType18 {
    int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r;
  };
  EXPECT_THAT(MyVarType18{},
              FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
  struct MyVarType19 {
    int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s;
  };
  EXPECT_THAT(MyVarType19{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                                       0, 0, 0, 0, 0));
}
#endif

TEST(PairTest, UseGetInsteadOfMembers) {
  PairWithGet pair{7, "ABC"};
  EXPECT_THAT(pair, Pair(7, "ABC"));
  EXPECT_THAT(pair, Pair(Ge(7), HasSubstr("AB")));
  EXPECT_THAT(pair, Not(Pair(Lt(7), "ABC")));

  std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}};
  EXPECT_THAT(v,
              ElementsAre(Pair(11, std::string("Foo")), Pair(Ge(10), Not(""))));
}

// Tests StartsWith(s).

TEST(StartsWithTest, MatchesStringWithGivenPrefix) {
  const Matcher<const char*> m1 = StartsWith(std::string(""));
  EXPECT_TRUE(m1.Matches("Hi"));
  EXPECT_TRUE(m1.Matches(""));
  EXPECT_FALSE(m1.Matches(nullptr));

  const Matcher<const std::string&> m2 = StartsWith("Hi");
  EXPECT_TRUE(m2.Matches("Hi"));
  EXPECT_TRUE(m2.Matches("Hi Hi!"));
  EXPECT_TRUE(m2.Matches("High"));
  EXPECT_FALSE(m2.Matches("H"));
  EXPECT_FALSE(m2.Matches(" Hi"));

#if GTEST_INTERNAL_HAS_STRING_VIEW
  const Matcher<internal::StringView> m_empty =
      StartsWith(internal::StringView(""));
  EXPECT_TRUE(m_empty.Matches(internal::StringView()));
  EXPECT_TRUE(m_empty.Matches(internal::StringView("")));
  EXPECT_TRUE(m_empty.Matches(internal::StringView("not empty")));
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
}

TEST(StartsWithTest, CanDescribeSelf) {
  Matcher<const std::string> m = StartsWith("Hi");
  EXPECT_EQ("starts with \"Hi\"", Describe(m));
}

TEST(StartsWithTest, WorksWithStringMatcherOnStringViewMatchee) {
#if GTEST_INTERNAL_HAS_STRING_VIEW
  EXPECT_THAT(internal::StringView("talk to me goose"),
              StartsWith(std::string("talk")));
#else
  GTEST_SKIP() << "Not applicable without internal::StringView.";
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
}

// Tests EndsWith(s).

TEST(EndsWithTest, MatchesStringWithGivenSuffix) {
  const Matcher<const char*> m1 = EndsWith("");
  EXPECT_TRUE(m1.Matches("Hi"));
  EXPECT_TRUE(m1.Matches(""));
  EXPECT_FALSE(m1.Matches(nullptr));

  const Matcher<const std::string&> m2 = EndsWith(std::string("Hi"));
  EXPECT_TRUE(m2.Matches("Hi"));
  EXPECT_TRUE(m2.Matches("Wow Hi Hi"));
  EXPECT_TRUE(m2.Matches("Super Hi"));
  EXPECT_FALSE(m2.Matches("i"));
  EXPECT_FALSE(m2.Matches("Hi "));

#if GTEST_INTERNAL_HAS_STRING_VIEW
  const Matcher<const internal::StringView&> m4 =
      EndsWith(internal::StringView(""));
  EXPECT_TRUE(m4.Matches("Hi"));
  EXPECT_TRUE(m4.Matches(""));
  EXPECT_TRUE(m4.Matches(internal::StringView()));
  EXPECT_TRUE(m4.Matches(internal::StringView("")));
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
}

TEST(EndsWithTest, CanDescribeSelf) {
  Matcher<const std::string> m = EndsWith("Hi");
  EXPECT_EQ("ends with \"Hi\"", Describe(m));
}

// Tests WhenBase64Unescaped.

TEST(WhenBase64UnescapedTest, MatchesUnescapedBase64Strings) {
  const Matcher<const char*> m1 = WhenBase64Unescaped(EndsWith("!"));
  EXPECT_FALSE(m1.Matches("invalid base64"));
  EXPECT_FALSE(m1.Matches("aGVsbG8gd29ybGQ="));  // hello world
  EXPECT_TRUE(m1.Matches("aGVsbG8gd29ybGQh"));   // hello world!
  EXPECT_TRUE(m1.Matches("+/-_IQ"));             // \xfb\xff\xbf!

  const Matcher<const std::string&> m2 = WhenBase64Unescaped(EndsWith("!"));
  EXPECT_FALSE(m2.Matches("invalid base64"));
  EXPECT_FALSE(m2.Matches("aGVsbG8gd29ybGQ="));  // hello world
  EXPECT_TRUE(m2.Matches("aGVsbG8gd29ybGQh"));   // hello world!
  EXPECT_TRUE(m2.Matches("+/-_IQ"));             // \xfb\xff\xbf!

#if GTEST_INTERNAL_HAS_STRING_VIEW
  const Matcher<const internal::StringView&> m3 =
      WhenBase64Unescaped(EndsWith("!"));
  EXPECT_FALSE(m3.Matches("invalid base64"));
  EXPECT_FALSE(m3.Matches("aGVsbG8gd29ybGQ="));  // hello world
  EXPECT_TRUE(m3.Matches("aGVsbG8gd29ybGQh"));   // hello world!
  EXPECT_TRUE(m3.Matches("+/-_IQ"));             // \xfb\xff\xbf!
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
}

TEST(WhenBase64UnescapedTest, CanDescribeSelf) {
  const Matcher<const char*> m = WhenBase64Unescaped(EndsWith("!"));
  EXPECT_EQ("matches after Base64Unescape ends with \"!\"", Describe(m));
}

// Tests MatchesRegex().

TEST(MatchesRegexTest, MatchesStringMatchingGivenRegex) {
  const Matcher<const char*> m1 = MatchesRegex("a.*z");
  EXPECT_TRUE(m1.Matches("az"));
  EXPECT_TRUE(m1.Matches("abcz"));
  EXPECT_FALSE(m1.Matches(nullptr));

  const Matcher<const std::string&> m2 = MatchesRegex(new RE("a.*z"));
  EXPECT_TRUE(m2.Matches("azbz"));
  EXPECT_FALSE(m2.Matches("az1"));
  EXPECT_FALSE(m2.Matches("1az"));

#if GTEST_INTERNAL_HAS_STRING_VIEW
  const Matcher<const internal::StringView&> m3 = MatchesRegex("a.*z");
  EXPECT_TRUE(m3.Matches(internal::StringView("az")));
  EXPECT_TRUE(m3.Matches(internal::StringView("abcz")));
  EXPECT_FALSE(m3.Matches(internal::StringView("1az")));
  EXPECT_FALSE(m3.Matches(internal::StringView()));
  const Matcher<const internal::StringView&> m4 =
      MatchesRegex(internal::StringView(""));
  EXPECT_TRUE(m4.Matches(internal::StringView("")));
  EXPECT_TRUE(m4.Matches(internal::StringView()));
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
}

TEST(MatchesRegexTest, CanDescribeSelf) {
  Matcher<const std::string> m1 = MatchesRegex(std::string("Hi.*"));
  EXPECT_EQ("matches regular expression \"Hi.*\"", Describe(m1));

  Matcher<const char*> m2 = MatchesRegex(new RE("a.*"));
  EXPECT_EQ("matches regular expression \"a.*\"", Describe(m2));

#if GTEST_INTERNAL_HAS_STRING_VIEW
  Matcher<const internal::StringView> m3 = MatchesRegex(new RE("0.*"));
  EXPECT_EQ("matches regular expression \"0.*\"", Describe(m3));
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
}

// Tests ContainsRegex().

TEST(ContainsRegexTest, MatchesStringContainingGivenRegex) {
  const Matcher<const char*> m1 = ContainsRegex(std::string("a.*z"));
  EXPECT_TRUE(m1.Matches("az"));
  EXPECT_TRUE(m1.Matches("0abcz1"));
  EXPECT_FALSE(m1.Matches(nullptr));

  const Matcher<const std::string&> m2 = ContainsRegex(new RE("a.*z"));
  EXPECT_TRUE(m2.Matches("azbz"));
  EXPECT_TRUE(m2.Matches("az1"));
  EXPECT_FALSE(m2.Matches("1a"));

#if GTEST_INTERNAL_HAS_STRING_VIEW
  const Matcher<const internal::StringView&> m3 = ContainsRegex(new RE("a.*z"));
  EXPECT_TRUE(m3.Matches(internal::StringView("azbz")));
  EXPECT_TRUE(m3.Matches(internal::StringView("az1")));
  EXPECT_FALSE(m3.Matches(internal::StringView("1a")));
  EXPECT_FALSE(m3.Matches(internal::StringView()));
  const Matcher<const internal::StringView&> m4 =
      ContainsRegex(internal::StringView(""));
  EXPECT_TRUE(m4.Matches(internal::StringView("")));
  EXPECT_TRUE(m4.Matches(internal::StringView()));
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
}

TEST(ContainsRegexTest, CanDescribeSelf) {
  Matcher<const std::string> m1 = ContainsRegex("Hi.*");
  EXPECT_EQ("contains regular expression \"Hi.*\"", Describe(m1));

  Matcher<const char*> m2 = ContainsRegex(new RE("a.*"));
  EXPECT_EQ("contains regular expression \"a.*\"", Describe(m2));

#if GTEST_INTERNAL_HAS_STRING_VIEW
  Matcher<const internal::StringView> m3 = ContainsRegex(new RE("0.*"));
  EXPECT_EQ("contains regular expression \"0.*\"", Describe(m3));
#endif  // GTEST_INTERNAL_HAS_STRING_VIEW
}

// Tests for wide strings.
#if GTEST_HAS_STD_WSTRING
TEST(StdWideStrEqTest, MatchesEqual) {
  Matcher<const wchar_t*> m = StrEq(::std::wstring(L"Hello"));
  EXPECT_TRUE(m.Matches(L"Hello"));
  EXPECT_FALSE(m.Matches(L"hello"));
  EXPECT_FALSE(m.Matches(nullptr));

  Matcher<const ::std::wstring&> m2 = StrEq(L"Hello");
  EXPECT_TRUE(m2.Matches(L"Hello"));
  EXPECT_FALSE(m2.Matches(L"Hi"));

  Matcher<const ::std::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D");
  EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D"));
  EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E"));

  ::std::wstring str(L"01204500800");
  str[3] = L'\0';
  Matcher<const ::std::wstring&> m4 = StrEq(str);
  EXPECT_TRUE(m4.Matches(str));
  str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
  Matcher<const ::std::wstring&> m5 = StrEq(str);
  EXPECT_TRUE(m5.Matches(str));
}

TEST(StdWideStrEqTest, CanDescribeSelf) {
  Matcher<::std::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v");
  EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"",
            Describe(m));

  Matcher<::std::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D");
  EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"", Describe(m2));

  ::std::wstring str(L"01204500800");
  str[3] = L'\0';
  Matcher<const ::std::wstring&> m4 = StrEq(str);
  EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4));
  str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
  Matcher<const ::std::wstring&> m5 = StrEq(str);
  EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5));
}

TEST(StdWideStrNeTest, MatchesUnequalString) {
  Matcher<const wchar_t*> m = StrNe(L"Hello");
  EXPECT_TRUE(m.Matches(L""));
  EXPECT_TRUE(m.Matches(nullptr));
  EXPECT_FALSE(m.Matches(L"Hello"));

  Matcher<::std::wstring> m2 = StrNe(::std::wstring(L"Hello"));
  EXPECT_TRUE(m2.Matches(L"hello"));
  EXPECT_FALSE(m2.Matches(L"Hello"));
}

TEST(StdWideStrNeTest, CanDescribeSelf) {
  Matcher<const wchar_t*> m = StrNe(L"Hi");
  EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m));
}

TEST(StdWideStrCaseEqTest, MatchesEqualStringIgnoringCase) {
  Matcher<const wchar_t*> m = StrCaseEq(::std::wstring(L"Hello"));
  EXPECT_TRUE(m.Matches(L"Hello"));
  EXPECT_TRUE(m.Matches(L"hello"));
  EXPECT_FALSE(m.Matches(L"Hi"));
  EXPECT_FALSE(m.Matches(nullptr));

  Matcher<const ::std::wstring&> m2 = StrCaseEq(L"Hello");
  EXPECT_TRUE(m2.Matches(L"hello"));
  EXPECT_FALSE(m2.Matches(L"Hi"));
}

TEST(StdWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
  ::std::wstring str1(L"oabocdooeoo");
  ::std::wstring str2(L"OABOCDOOEOO");
  Matcher<const ::std::wstring&> m0 = StrCaseEq(str1);
  EXPECT_FALSE(m0.Matches(str2 + ::std::wstring(1, L'\0')));

  str1[3] = str2[3] = L'\0';
  Matcher<const ::std::wstring&> m1 = StrCaseEq(str1);
  EXPECT_TRUE(m1.Matches(str2));

  str1[0] = str1[6] = str1[7] = str1[10] = L'\0';
  str2[0] = str2[6] = str2[7] = str2[10] = L'\0';
  Matcher<const ::std::wstring&> m2 = StrCaseEq(str1);
  str1[9] = str2[9] = L'\0';
  EXPECT_FALSE(m2.Matches(str2));

  Matcher<const ::std::wstring&> m3 = StrCaseEq(str1);
  EXPECT_TRUE(m3.Matches(str2));

  EXPECT_FALSE(m3.Matches(str2 + L"x"));
  str2.append(1, L'\0');
  EXPECT_FALSE(m3.Matches(str2));
  EXPECT_FALSE(m3.Matches(::std::wstring(str2, 0, 9)));
}

TEST(StdWideStrCaseEqTest, CanDescribeSelf) {
  Matcher<::std::wstring> m = StrCaseEq(L"Hi");
  EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m));
}

TEST(StdWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) {
  Matcher<const wchar_t*> m = StrCaseNe(L"Hello");
  EXPECT_TRUE(m.Matches(L"Hi"));
  EXPECT_TRUE(m.Matches(nullptr));
  EXPECT_FALSE(m.Matches(L"Hello"));
  EXPECT_FALSE(m.Matches(L"hello"));

  Matcher<::std::wstring> m2 = StrCaseNe(::std::wstring(L"Hello"));
  EXPECT_TRUE(m2.Matches(L""));
  EXPECT_FALSE(m2.Matches(L"Hello"));
}

TEST(StdWideStrCaseNeTest, CanDescribeSelf) {
  Matcher<const wchar_t*> m = StrCaseNe(L"Hi");
  EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m));
}

// Tests that HasSubstr() works for matching wstring-typed values.
TEST(StdWideHasSubstrTest, WorksForStringClasses) {
  const Matcher<::std::wstring> m1 = HasSubstr(L"foo");
  EXPECT_TRUE(m1.Matches(::std::wstring(L"I love food.")));
  EXPECT_FALSE(m1.Matches(::std::wstring(L"tofo")));

  const Matcher<const ::std::wstring&> m2 = HasSubstr(L"foo");
  EXPECT_TRUE(m2.Matches(::std::wstring(L"I love food.")));
  EXPECT_FALSE(m2.Matches(::std::wstring(L"tofo")));
}

// Tests that HasSubstr() works for matching C-wide-string-typed values.
TEST(StdWideHasSubstrTest, WorksForCStrings) {
  const Matcher<wchar_t*> m1 = HasSubstr(L"foo");
  EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food.")));
  EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo")));
  EXPECT_FALSE(m1.Matches(nullptr));

  const Matcher<const wchar_t*> m2 = HasSubstr(L"foo");
  EXPECT_TRUE(m2.Matches(L"I love food."));
  EXPECT_FALSE(m2.Matches(L"tofo"));
  EXPECT_FALSE(m2.Matches(nullptr));
}

// Tests that HasSubstr(s) describes itself properly.
TEST(StdWideHasSubstrTest, CanDescribeSelf) {
  Matcher<::std::wstring> m = HasSubstr(L"foo\n\"");
  EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m));
}

// Tests StartsWith(s).

TEST(StdWideStartsWithTest, MatchesStringWithGivenPrefix) {
  const Matcher<const wchar_t*> m1 = StartsWith(::std::wstring(L""));
  EXPECT_TRUE(m1.Matches(L"Hi"));
  EXPECT_TRUE(m1.Matches(L""));
  EXPECT_FALSE(m1.Matches(nullptr));

  const Matcher<const ::std::wstring&> m2 = StartsWith(L"Hi");
  EXPECT_TRUE(m2.Matches(L"Hi"));
  EXPECT_TRUE(m2.Matches(L"Hi Hi!"));
  EXPECT_TRUE(m2.Matches(L"High"));
  EXPECT_FALSE(m2.Matches(L"H"));
  EXPECT_FALSE(m2.Matches(L" Hi"));
}

TEST(StdWideStartsWithTest, CanDescribeSelf) {
  Matcher<const ::std::wstring> m = StartsWith(L"Hi");
  EXPECT_EQ("starts with L\"Hi\"", Describe(m));
}

// Tests EndsWith(s).

TEST(StdWideEndsWithTest, MatchesStringWithGivenSuffix) {
  const Matcher<const wchar_t*> m1 = EndsWith(L"");
  EXPECT_TRUE(m1.Matches(L"Hi"));
  EXPECT_TRUE(m1.Matches(L""));
  EXPECT_FALSE(m1.Matches(nullptr));

  const Matcher<const ::std::wstring&> m2 = EndsWith(::std::wstring(L"Hi"));
  EXPECT_TRUE(m2.Matches(L"Hi"));
  EXPECT_TRUE(m2.Matches(L"Wow Hi Hi"));
  EXPECT_TRUE(m2.Matches(L"Super Hi"));
  EXPECT_FALSE(m2.Matches(L"i"));
  EXPECT_FALSE(m2.Matches(L"Hi "));
}

TEST(StdWideEndsWithTest, CanDescribeSelf) {
  Matcher<const ::std::wstring> m = EndsWith(L"Hi");
  EXPECT_EQ("ends with L\"Hi\"", Describe(m));
}

#endif  // GTEST_HAS_STD_WSTRING

TEST(ExplainMatchResultTest, WorksWithPolymorphicMatcher) {
  StringMatchResultListener listener1;
  EXPECT_TRUE(ExplainMatchResult(PolymorphicIsEven(), 42, &listener1));
  EXPECT_EQ("% 2 == 0", listener1.str());

  StringMatchResultListener listener2;
  EXPECT_FALSE(ExplainMatchResult(Ge(42), 1.5, &listener2));
  EXPECT_EQ("", listener2.str());
}

TEST(ExplainMatchResultTest, WorksWithMonomorphicMatcher) {
  const Matcher<int> is_even = PolymorphicIsEven();
  StringMatchResultListener listener1;
  EXPECT_TRUE(ExplainMatchResult(is_even, 42, &listener1));
  EXPECT_EQ("% 2 == 0", listener1.str());

  const Matcher<const double&> is_zero = Eq(0);
  StringMatchResultListener listener2;
  EXPECT_FALSE(ExplainMatchResult(is_zero, 1.5, &listener2));
  EXPECT_EQ("", listener2.str());
}

MATCHER(ConstructNoArg, "") { return true; }
MATCHER_P(Construct1Arg, arg1, "") { return true; }
MATCHER_P2(Construct2Args, arg1, arg2, "") { return true; }

TEST(MatcherConstruct, ExplicitVsImplicit) {
  {
    // No arg constructor can be constructed with empty brace.
    ConstructNoArgMatcher m = {};
    (void)m;
    // And with no args
    ConstructNoArgMatcher m2;
    (void)m2;
  }
  {
    // The one arg constructor has an explicit constructor.
    // This is to prevent the implicit conversion.
    using M = Construct1ArgMatcherP<int>;
    EXPECT_TRUE((std::is_constructible<M, int>::value));
    EXPECT_FALSE((std::is_convertible<int, M>::value));
  }
  {
    // Multiple arg matchers can be constructed with an implicit construction.
    Construct2ArgsMatcherP2<int, double> m = {1, 2.2};
    (void)m;
  }
}

MATCHER_P(Really, inner_matcher, "") {
  return ExplainMatchResult(inner_matcher, arg, result_listener);
}

TEST(ExplainMatchResultTest, WorksInsideMATCHER) {
  EXPECT_THAT(0, Really(Eq(0)));
}

TEST(DescribeMatcherTest, WorksWithValue) {
  EXPECT_EQ("is equal to 42", DescribeMatcher<int>(42));
  EXPECT_EQ("isn't equal to 42", DescribeMatcher<int>(42, true));
}

TEST(DescribeMatcherTest, WorksWithMonomorphicMatcher) {
  const Matcher<int> monomorphic = Le(0);
  EXPECT_EQ("is <= 0", DescribeMatcher<int>(monomorphic));
  EXPECT_EQ("isn't <= 0", DescribeMatcher<int>(monomorphic, true));
}

TEST(DescribeMatcherTest, WorksWithPolymorphicMatcher) {
  EXPECT_EQ("is even", DescribeMatcher<int>(PolymorphicIsEven()));
  EXPECT_EQ("is odd", DescribeMatcher<int>(PolymorphicIsEven(), true));
}

MATCHER_P(FieldIIs, inner_matcher, "") {
  return ExplainMatchResult(inner_matcher, arg.i, result_listener);
}

#if GTEST_HAS_RTTI
TEST(WhenDynamicCastToTest, SameType) {
  Derived derived;
  derived.i = 4;

  // Right type. A pointer is passed down.
  Base* as_base_ptr = &derived;
  EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Not(IsNull())));
  EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(4))));
  EXPECT_THAT(as_base_ptr,
              Not(WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(5)))));
}

TEST(WhenDynamicCastToTest, WrongTypes) {
  Base base;
  Derived derived;
  OtherDerived other_derived;

  // Wrong types. NULL is passed.
  EXPECT_THAT(&base, Not(WhenDynamicCastTo<Derived*>(Pointee(_))));
  EXPECT_THAT(&base, WhenDynamicCastTo<Derived*>(IsNull()));
  Base* as_base_ptr = &derived;
  EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<OtherDerived*>(Pointee(_))));
  EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<OtherDerived*>(IsNull()));
  as_base_ptr = &other_derived;
  EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<Derived*>(Pointee(_))));
  EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull()));
}

TEST(WhenDynamicCastToTest, AlreadyNull) {
  // Already NULL.
  Base* as_base_ptr = nullptr;
  EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull()));
}

struct AmbiguousCastTypes {
  class VirtualDerived : public virtual Base {};
  class DerivedSub1 : public VirtualDerived {};
  class DerivedSub2 : public VirtualDerived {};
  class ManyDerivedInHierarchy : public DerivedSub1, public DerivedSub2 {};
};

TEST(WhenDynamicCastToTest, AmbiguousCast) {
  AmbiguousCastTypes::DerivedSub1 sub1;
  AmbiguousCastTypes::ManyDerivedInHierarchy many_derived;
  // Multiply derived from Base. dynamic_cast<> returns NULL.
  Base* as_base_ptr =
      static_cast<AmbiguousCastTypes::DerivedSub1*>(&many_derived);
  EXPECT_THAT(as_base_ptr,
              WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(IsNull()));
  as_base_ptr = &sub1;
  EXPECT_THAT(
      as_base_ptr,
      WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(Not(IsNull())));
}

TEST(WhenDynamicCastToTest, Describe) {
  Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_));
  const std::string prefix =
      "when dynamic_cast to " + internal::GetTypeName<Derived*>() + ", ";
  EXPECT_EQ(prefix + "points to a value that is anything", Describe(matcher));
  EXPECT_EQ(prefix + "does not point to a value that is anything",
            DescribeNegation(matcher));
}

TEST(WhenDynamicCastToTest, Explain) {
  Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_));
  Base* null = nullptr;
  EXPECT_THAT(Explain(matcher, null), HasSubstr("NULL"));
  Derived derived;
  EXPECT_TRUE(matcher.Matches(&derived));
  EXPECT_THAT(Explain(matcher, &derived), HasSubstr("which points to "));

  // With references, the matcher itself can fail. Test for that one.
  Matcher<const Base&> ref_matcher = WhenDynamicCastTo<const OtherDerived&>(_);
  EXPECT_THAT(Explain(ref_matcher, derived),
              HasSubstr("which cannot be dynamic_cast"));
}

TEST(WhenDynamicCastToTest, GoodReference) {
  Derived derived;
  derived.i = 4;
  Base& as_base_ref = derived;
  EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(FieldIIs(4)));
  EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(Not(FieldIIs(5))));
}

TEST(WhenDynamicCastToTest, BadReference) {
  Derived derived;
  Base& as_base_ref = derived;
  EXPECT_THAT(as_base_ref, Not(WhenDynamicCastTo<const OtherDerived&>(_)));
}
#endif  // GTEST_HAS_RTTI

class DivisibleByImpl {
 public:
  explicit DivisibleByImpl(int a_divider) : divider_(a_divider) {}

  // For testing using ExplainMatchResultTo() with polymorphic matchers.
  template <typename T>
  bool MatchAndExplain(const T& n, MatchResultListener* listener) const {
    *listener << "which is " << (n % divider_) << " modulo " << divider_;
    return (n % divider_) == 0;
  }

  void DescribeTo(ostream* os) const { *os << "is divisible by " << divider_; }

  void DescribeNegationTo(ostream* os) const {
    *os << "is not divisible by " << divider_;
  }

  void set_divider(int a_divider) { divider_ = a_divider; }
  int divider() const { return divider_; }

 private:
  int divider_;
};

PolymorphicMatcher<DivisibleByImpl> DivisibleBy(int n) {
  return MakePolymorphicMatcher(DivisibleByImpl(n));
}

// Tests that when AllOf() fails, only the first failing matcher is
// asked to explain why.
TEST(ExplainMatchResultTest, AllOf_False_False) {
  const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3));
  EXPECT_EQ("which is 1 modulo 4", Explain(m, 5));
}

// Tests that when AllOf() fails, only the first failing matcher is
// asked to explain why.
TEST(ExplainMatchResultTest, AllOf_False_True) {
  const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3));
  EXPECT_EQ("which is 2 modulo 4", Explain(m, 6));
}

// Tests that when AllOf() fails, only the first failing matcher is
// asked to explain why.
TEST(ExplainMatchResultTest, AllOf_True_False) {
  const Matcher<int> m = AllOf(Ge(1), DivisibleBy(3));
  EXPECT_EQ("which is 2 modulo 3", Explain(m, 5));
}

// Tests that when AllOf() succeeds, all matchers are asked to explain
// why.
TEST(ExplainMatchResultTest, AllOf_True_True) {
  const Matcher<int> m = AllOf(DivisibleBy(2), DivisibleBy(3));
  EXPECT_EQ("which is 0 modulo 2, and which is 0 modulo 3", Explain(m, 6));
}

TEST(ExplainMatchResultTest, AllOf_True_True_2) {
  const Matcher<int> m = AllOf(Ge(2), Le(3));
  EXPECT_EQ("", Explain(m, 2));
}

INSTANTIATE_GTEST_MATCHER_TEST_P(ExplainmatcherResultTest);

TEST_P(ExplainmatcherResultTestP, MonomorphicMatcher) {
  const Matcher<int> m = GreaterThan(5);
  EXPECT_EQ("which is 1 more than 5", Explain(m, 6));
}

// Tests PolymorphicMatcher::mutable_impl().
TEST(PolymorphicMatcherTest, CanAccessMutableImpl) {
  PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42));
  DivisibleByImpl& impl = m.mutable_impl();
  EXPECT_EQ(42, impl.divider());

  impl.set_divider(0);
  EXPECT_EQ(0, m.mutable_impl().divider());
}

// Tests PolymorphicMatcher::impl().
TEST(PolymorphicMatcherTest, CanAccessImpl) {
  const PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42));
  const DivisibleByImpl& impl = m.impl();
  EXPECT_EQ(42, impl.divider());
}

}  // namespace
}  // namespace gmock_matchers_test
}  // namespace testing

GTEST_DISABLE_MSC_WARNINGS_POP_()  // 4244 4100