// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // The ACTION* family of macros can be used in a namespace scope to // define custom actions easily. The syntax: // // ACTION(name) { statements; } // // will define an action with the given name that executes the // statements. The value returned by the statements will be used as // the return value of the action. Inside the statements, you can // refer to the K-th (0-based) argument of the mock function by // 'argK', and refer to its type by 'argK_type'. For example: // // ACTION(IncrementArg1) { // arg1_type temp = arg1; // return ++(*temp); // } // // allows you to write // // ...WillOnce(IncrementArg1()); // // You can also refer to the entire argument tuple and its type by // 'args' and 'args_type', and refer to the mock function type and its // return type by 'function_type' and 'return_type'. // // Note that you don't need to specify the types of the mock function // arguments. However rest assured that your code is still type-safe: // you'll get a compiler error if *arg1 doesn't support the ++ // operator, or if the type of ++(*arg1) isn't compatible with the // mock function's return type, for example. // // Sometimes you'll want to parameterize the action. For that you can use // another macro: // // ACTION_P(name, param_name) { statements; } // // For example: // // ACTION_P(Add, n) { return arg0 + n; } // // will allow you to write: // // ...WillOnce(Add(5)); // // Note that you don't need to provide the type of the parameter // either. If you need to reference the type of a parameter named // 'foo', you can write 'foo_type'. For example, in the body of // ACTION_P(Add, n) above, you can write 'n_type' to refer to the type // of 'n'. // // We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support // multi-parameter actions. // // For the purpose of typing, you can view // // ACTION_Pk(Foo, p1, ..., pk) { ... } // // as shorthand for // // template <typename p1_type, ..., typename pk_type> // FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... } // // In particular, you can provide the template type arguments // explicitly when invoking Foo(), as in Foo<long, bool>(5, false); // although usually you can rely on the compiler to infer the types // for you automatically. You can assign the result of expression // Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ..., // pk_type>. This can be useful when composing actions. // // You can also overload actions with different numbers of parameters: // // ACTION_P(Plus, a) { ... } // ACTION_P2(Plus, a, b) { ... } // // While it's tempting to always use the ACTION* macros when defining // a new action, you should also consider implementing ActionInterface // or using MakePolymorphicAction() instead, especially if you need to // use the action a lot. While these approaches require more work, // they give you more control on the types of the mock function // arguments and the action parameters, which in general leads to // better compiler error messages that pay off in the long run. They // also allow overloading actions based on parameter types (as opposed // to just based on the number of parameters). // // CAVEAT: // // ACTION*() can only be used in a namespace scope as templates cannot be // declared inside of a local class. // Users can, however, define any local functors (e.g. a lambda) that // can be used as actions. // // MORE INFORMATION: // // To learn more about using these macros, please search for 'ACTION' on // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md // IWYU pragma: private, include "gmock/gmock.h" // IWYU pragma: friend gmock/.* #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_ #ifndef _WIN32_WCE #include <errno.h> #endif #include <algorithm> #include <functional> #include <memory> #include <string> #include <tuple> #include <type_traits> #include <utility> #include "gmock/internal/gmock-internal-utils.h" #include "gmock/internal/gmock-port.h" #include "gmock/internal/gmock-pp.h" GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100) namespace testing { // To implement an action Foo, define: // 1. a class FooAction that implements the ActionInterface interface, and // 2. a factory function that creates an Action object from a // const FooAction*. // // The two-level delegation design follows that of Matcher, providing // consistency for extension developers. It also eases ownership // management as Action objects can now be copied like plain values. namespace internal { // BuiltInDefaultValueGetter<T, true>::Get() returns a // default-constructed T value. BuiltInDefaultValueGetter<T, // false>::Get() crashes with an error. // // This primary template is used when kDefaultConstructible is true. template <typename T, bool kDefaultConstructible> struct BuiltInDefaultValueGetter { static T Get() { return T(); } }; template <typename T> struct BuiltInDefaultValueGetter<T, false> { static T Get() { Assert(false, __FILE__, __LINE__, "Default action undefined for the function return type."); return internal::Invalid<T>(); // The above statement will never be reached, but is required in // order for this function to compile. } }; // BuiltInDefaultValue<T>::Get() returns the "built-in" default value // for type T, which is NULL when T is a raw pointer type, 0 when T is // a numeric type, false when T is bool, or "" when T is string or // std::string. In addition, in C++11 and above, it turns a // default-constructed T value if T is default constructible. For any // other type T, the built-in default T value is undefined, and the // function will abort the process. template <typename T> class BuiltInDefaultValue { public: // This function returns true if and only if type T has a built-in default // value. static bool Exists() { return ::std::is_default_constructible<T>::value; } static T Get() { return BuiltInDefaultValueGetter< T, ::std::is_default_constructible<T>::value>::Get(); } }; // This partial specialization says that we use the same built-in // default value for T and const T. template <typename T> class BuiltInDefaultValue<const T> { public: static bool Exists() { return BuiltInDefaultValue<T>::Exists(); } static T Get() { return BuiltInDefaultValue<T>::Get(); } }; // This partial specialization defines the default values for pointer // types. template <typename T> class BuiltInDefaultValue<T*> { public: static bool Exists() { return true; } static T* Get() { return nullptr; } }; // The following specializations define the default values for // specific types we care about. #define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \ template <> \ class BuiltInDefaultValue<type> { \ public: \ static bool Exists() { return true; } \ static type Get() { return value; } \ } GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, ""); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); // There's no need for a default action for signed wchar_t, as that // type is the same as wchar_t for gcc, and invalid for MSVC. // // There's also no need for a default action for unsigned wchar_t, as // that type is the same as unsigned int for gcc, and invalid for // MSVC. #if GMOCK_WCHAR_T_IS_NATIVE_ GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT #endif GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0); #undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_ // Partial implementations of metaprogramming types from the standard library // not available in C++11. template <typename P> struct negation // NOLINTNEXTLINE : std::integral_constant<bool, bool(!P::value)> {}; // Base case: with zero predicates the answer is always true. template <typename...> struct conjunction : std::true_type {}; // With a single predicate, the answer is that predicate. template <typename P1> struct conjunction<P1> : P1 {}; // With multiple predicates the answer is the first predicate if that is false, // and we recurse otherwise. template <typename P1, typename... Ps> struct conjunction<P1, Ps...> : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {}; template <typename...> struct disjunction : std::false_type {}; template <typename P1> struct disjunction<P1> : P1 {}; template <typename P1, typename... Ps> struct disjunction<P1, Ps...> // NOLINTNEXTLINE : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {}; template <typename...> using void_t = void; // Detects whether an expression of type `From` can be implicitly converted to // `To` according to [conv]. In C++17, [conv]/3 defines this as follows: // // An expression e can be implicitly converted to a type T if and only if // the declaration T t=e; is well-formed, for some invented temporary // variable t ([dcl.init]). // // [conv]/2 implies we can use function argument passing to detect whether this // initialization is valid. // // Note that this is distinct from is_convertible, which requires this be valid: // // To test() { // return declval<From>(); // } // // In particular, is_convertible doesn't give the correct answer when `To` and // `From` are the same non-moveable type since `declval<From>` will be an rvalue // reference, defeating the guaranteed copy elision that would otherwise make // this function work. // // REQUIRES: `From` is not cv void. template <typename From, typename To> struct is_implicitly_convertible { private: // A function that accepts a parameter of type T. This can be called with type // U successfully only if U is implicitly convertible to T. template <typename T> static void Accept(T); // A function that creates a value of type T. template <typename T> static T Make(); // An overload be selected when implicit conversion from T to To is possible. template <typename T, typename = decltype(Accept<To>(Make<T>()))> static std::true_type TestImplicitConversion(int); // A fallback overload selected in all other cases. template <typename T> static std::false_type TestImplicitConversion(...); public: using type = decltype(TestImplicitConversion<From>(0)); static constexpr bool value = type::value; }; // Like std::invoke_result_t from C++17, but works only for objects with call // operators (not e.g. member function pointers, which we don't need specific // support for in OnceAction because std::function deals with them). template <typename F, typename... Args> using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...)); template <typename Void, typename R, typename F, typename... Args> struct is_callable_r_impl : std::false_type {}; // Specialize the struct for those template arguments where call_result_t is // well-formed. When it's not, the generic template above is chosen, resulting // in std::false_type. template <typename R, typename F, typename... Args> struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...> : std::conditional< std::is_void<R>::value, // std::true_type, // is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {}; // Like std::is_invocable_r from C++17, but works only for objects with call // operators. See the note on call_result_t. template <typename R, typename F, typename... Args> using is_callable_r = is_callable_r_impl<void, R, F, Args...>; // Like std::as_const from C++17. template <typename T> typename std::add_const<T>::type& as_const(T& t) { return t; } } // namespace internal // Specialized for function types below. template <typename F> class OnceAction; // An action that can only be used once. // // This is accepted by WillOnce, which doesn't require the underlying action to // be copy-constructible (only move-constructible), and promises to invoke it as // an rvalue reference. This allows the action to work with move-only types like // std::move_only_function in a type-safe manner. // // For example: // // // Assume we have some API that needs to accept a unique pointer to some // // non-copyable object Foo. // void AcceptUniquePointer(std::unique_ptr<Foo> foo); // // // We can define an action that provides a Foo to that API. Because It // // has to give away its unique pointer, it must not be called more than // // once, so its call operator is &&-qualified. // struct ProvideFoo { // std::unique_ptr<Foo> foo; // // void operator()() && { // AcceptUniquePointer(std::move(Foo)); // } // }; // // // This action can be used with WillOnce. // EXPECT_CALL(mock, Call) // .WillOnce(ProvideFoo{std::make_unique<Foo>(...)}); // // // But a call to WillRepeatedly will fail to compile. This is correct, // // since the action cannot correctly be used repeatedly. // EXPECT_CALL(mock, Call) // .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)}); // // A less-contrived example would be an action that returns an arbitrary type, // whose &&-qualified call operator is capable of dealing with move-only types. template <typename Result, typename... Args> class OnceAction<Result(Args...)> final { private: // True iff we can use the given callable type (or lvalue reference) directly // via StdFunctionAdaptor. template <typename Callable> using IsDirectlyCompatible = internal::conjunction< // It must be possible to capture the callable in StdFunctionAdaptor. std::is_constructible<typename std::decay<Callable>::type, Callable>, // The callable must be compatible with our signature. internal::is_callable_r<Result, typename std::decay<Callable>::type, Args...>>; // True iff we can use the given callable type via StdFunctionAdaptor once we // ignore incoming arguments. template <typename Callable> using IsCompatibleAfterIgnoringArguments = internal::conjunction< // It must be possible to capture the callable in a lambda. std::is_constructible<typename std::decay<Callable>::type, Callable>, // The callable must be invocable with zero arguments, returning something // convertible to Result. internal::is_callable_r<Result, typename std::decay<Callable>::type>>; public: // Construct from a callable that is directly compatible with our mocked // signature: it accepts our function type's arguments and returns something // convertible to our result type. template <typename Callable, typename std::enable_if< internal::conjunction< // Teach clang on macOS that we're not talking about a // copy/move constructor here. Otherwise it gets confused // when checking the is_constructible requirement of our // traits above. internal::negation<std::is_same< OnceAction, typename std::decay<Callable>::type>>, IsDirectlyCompatible<Callable>> // ::value, int>::type = 0> OnceAction(Callable&& callable) // NOLINT : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>( {}, std::forward<Callable>(callable))) {} // As above, but for a callable that ignores the mocked function's arguments. template <typename Callable, typename std::enable_if< internal::conjunction< // Teach clang on macOS that we're not talking about a // copy/move constructor here. Otherwise it gets confused // when checking the is_constructible requirement of our // traits above. internal::negation<std::is_same< OnceAction, typename std::decay<Callable>::type>>, // Exclude callables for which the overload above works. // We'd rather provide the arguments if possible. internal::negation<IsDirectlyCompatible<Callable>>, IsCompatibleAfterIgnoringArguments<Callable>>::value, int>::type = 0> OnceAction(Callable&& callable) // NOLINT // Call the constructor above with a callable // that ignores the input arguments. : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{ std::forward<Callable>(callable)}) {} // We are naturally copyable because we store only an std::function, but // semantically we should not be copyable. OnceAction(const OnceAction&) = delete; OnceAction& operator=(const OnceAction&) = delete; OnceAction(OnceAction&&) = default; // Invoke the underlying action callable with which we were constructed, // handing it the supplied arguments. Result Call(Args... args) && { return function_(std::forward<Args>(args)...); } private: // An adaptor that wraps a callable that is compatible with our signature and // being invoked as an rvalue reference so that it can be used as an // StdFunctionAdaptor. This throws away type safety, but that's fine because // this is only used by WillOnce, which we know calls at most once. // // Once we have something like std::move_only_function from C++23, we can do // away with this. template <typename Callable> class StdFunctionAdaptor final { public: // A tag indicating that the (otherwise universal) constructor is accepting // the callable itself, instead of e.g. stealing calls for the move // constructor. struct CallableTag final {}; template <typename F> explicit StdFunctionAdaptor(CallableTag, F&& callable) : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {} // Rather than explicitly returning Result, we return whatever the wrapped // callable returns. This allows for compatibility with existing uses like // the following, when the mocked function returns void: // // EXPECT_CALL(mock_fn_, Call) // .WillOnce([&] { // [...] // return 0; // }); // // Such a callable can be turned into std::function<void()>. If we use an // explicit return type of Result here then it *doesn't* work with // std::function, because we'll get a "void function should not return a // value" error. // // We need not worry about incompatible result types because the SFINAE on // OnceAction already checks this for us. std::is_invocable_r_v itself makes // the same allowance for void result types. template <typename... ArgRefs> internal::call_result_t<Callable, ArgRefs...> operator()( ArgRefs&&... args) const { return std::move(*callable_)(std::forward<ArgRefs>(args)...); } private: // We must put the callable on the heap so that we are copyable, which // std::function needs. std::shared_ptr<Callable> callable_; }; // An adaptor that makes a callable that accepts zero arguments callable with // our mocked arguments. template <typename Callable> struct IgnoreIncomingArguments { internal::call_result_t<Callable> operator()(Args&&...) { return std::move(callable)(); } Callable callable; }; std::function<Result(Args...)> function_; }; // When an unexpected function call is encountered, Google Mock will // let it return a default value if the user has specified one for its // return type, or if the return type has a built-in default value; // otherwise Google Mock won't know what value to return and will have // to abort the process. // // The DefaultValue<T> class allows a user to specify the // default value for a type T that is both copyable and publicly // destructible (i.e. anything that can be used as a function return // type). The usage is: // // // Sets the default value for type T to be foo. // DefaultValue<T>::Set(foo); template <typename T> class DefaultValue { public: // Sets the default value for type T; requires T to be // copy-constructable and have a public destructor. static void Set(T x) { delete producer_; producer_ = new FixedValueProducer(x); } // Provides a factory function to be called to generate the default value. // This method can be used even if T is only move-constructible, but it is not // limited to that case. typedef T (*FactoryFunction)(); static void SetFactory(FactoryFunction factory) { delete producer_; producer_ = new FactoryValueProducer(factory); } // Unsets the default value for type T. static void Clear() { delete producer_; producer_ = nullptr; } // Returns true if and only if the user has set the default value for type T. static bool IsSet() { return producer_ != nullptr; } // Returns true if T has a default return value set by the user or there // exists a built-in default value. static bool Exists() { return IsSet() || internal::BuiltInDefaultValue<T>::Exists(); } // Returns the default value for type T if the user has set one; // otherwise returns the built-in default value. Requires that Exists() // is true, which ensures that the return value is well-defined. static T Get() { return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get() : producer_->Produce(); } private: class ValueProducer { public: virtual ~ValueProducer() {} virtual T Produce() = 0; }; class FixedValueProducer : public ValueProducer { public: explicit FixedValueProducer(T value) : value_(value) {} T Produce() override { return value_; } private: const T value_; FixedValueProducer(const FixedValueProducer&) = delete; FixedValueProducer& operator=(const FixedValueProducer&) = delete; }; class FactoryValueProducer : public ValueProducer { public: explicit FactoryValueProducer(FactoryFunction factory) : factory_(factory) {} T Produce() override { return factory_(); } private: const FactoryFunction factory_; FactoryValueProducer(const FactoryValueProducer&) = delete; FactoryValueProducer& operator=(const FactoryValueProducer&) = delete; }; static ValueProducer* producer_; }; // This partial specialization allows a user to set default values for // reference types. template <typename T> class DefaultValue<T&> { public: // Sets the default value for type T&. static void Set(T& x) { // NOLINT address_ = &x; } // Unsets the default value for type T&. static void Clear() { address_ = nullptr; } // Returns true if and only if the user has set the default value for type T&. static bool IsSet() { return address_ != nullptr; } // Returns true if T has a default return value set by the user or there // exists a built-in default value. static bool Exists() { return IsSet() || internal::BuiltInDefaultValue<T&>::Exists(); } // Returns the default value for type T& if the user has set one; // otherwise returns the built-in default value if there is one; // otherwise aborts the process. static T& Get() { return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get() : *address_; } private: static T* address_; }; // This specialization allows DefaultValue<void>::Get() to // compile. template <> class DefaultValue<void> { public: static bool Exists() { return true; } static void Get() {} }; // Points to the user-set default value for type T. template <typename T> typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr; // Points to the user-set default value for type T&. template <typename T> T* DefaultValue<T&>::address_ = nullptr; // Implement this interface to define an action for function type F. template <typename F> class ActionInterface { public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; ActionInterface() {} virtual ~ActionInterface() {} // Performs the action. This method is not const, as in general an // action can have side effects and be stateful. For example, a // get-the-next-element-from-the-collection action will need to // remember the current element. virtual Result Perform(const ArgumentTuple& args) = 0; private: ActionInterface(const ActionInterface&) = delete; ActionInterface& operator=(const ActionInterface&) = delete; }; template <typename F> class Action; // An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment) // object that represents an action to be taken when a mock function of type // R(Args...) is called. The implementation of Action<T> is just a // std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You // can view an object implementing ActionInterface<F> as a concrete action // (including its current state), and an Action<F> object as a handle to it. template <typename R, typename... Args> class Action<R(Args...)> { private: using F = R(Args...); // Adapter class to allow constructing Action from a legacy ActionInterface. // New code should create Actions from functors instead. struct ActionAdapter { // Adapter must be copyable to satisfy std::function requirements. ::std::shared_ptr<ActionInterface<F>> impl_; template <typename... InArgs> typename internal::Function<F>::Result operator()(InArgs&&... args) { return impl_->Perform( ::std::forward_as_tuple(::std::forward<InArgs>(args)...)); } }; template <typename G> using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>; public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; // Constructs a null Action. Needed for storing Action objects in // STL containers. Action() {} // Construct an Action from a specified callable. // This cannot take std::function directly, because then Action would not be // directly constructible from lambda (it would require two conversions). template < typename G, typename = typename std::enable_if<internal::disjunction< IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>, G>>::value>::type> Action(G&& fun) { // NOLINT Init(::std::forward<G>(fun), IsCompatibleFunctor<G>()); } // Constructs an Action from its implementation. explicit Action(ActionInterface<F>* impl) : fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {} // This constructor allows us to turn an Action<Func> object into an // Action<F>, as long as F's arguments can be implicitly converted // to Func's and Func's return type can be implicitly converted to F's. template <typename Func> Action(const Action<Func>& action) // NOLINT : fun_(action.fun_) {} // Returns true if and only if this is the DoDefault() action. bool IsDoDefault() const { return fun_ == nullptr; } // Performs the action. Note that this method is const even though // the corresponding method in ActionInterface is not. The reason // is that a const Action<F> means that it cannot be re-bound to // another concrete action, not that the concrete action it binds to // cannot change state. (Think of the difference between a const // pointer and a pointer to const.) Result Perform(ArgumentTuple args) const { if (IsDoDefault()) { internal::IllegalDoDefault(__FILE__, __LINE__); } return internal::Apply(fun_, ::std::move(args)); } // An action can be used as a OnceAction, since it's obviously safe to call it // once. operator OnceAction<F>() const { // NOLINT // Return a OnceAction-compatible callable that calls Perform with the // arguments it is provided. We could instead just return fun_, but then // we'd need to handle the IsDoDefault() case separately. struct OA { Action<F> action; R operator()(Args... args) && { return action.Perform( std::forward_as_tuple(std::forward<Args>(args)...)); } }; return OA{*this}; } private: template <typename G> friend class Action; template <typename G> void Init(G&& g, ::std::true_type) { fun_ = ::std::forward<G>(g); } template <typename G> void Init(G&& g, ::std::false_type) { fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)}; } template <typename FunctionImpl> struct IgnoreArgs { template <typename... InArgs> Result operator()(const InArgs&...) const { return function_impl(); } FunctionImpl function_impl; }; // fun_ is an empty function if and only if this is the DoDefault() action. ::std::function<F> fun_; }; // The PolymorphicAction class template makes it easy to implement a // polymorphic action (i.e. an action that can be used in mock // functions of than one type, e.g. Return()). // // To define a polymorphic action, a user first provides a COPYABLE // implementation class that has a Perform() method template: // // class FooAction { // public: // template <typename Result, typename ArgumentTuple> // Result Perform(const ArgumentTuple& args) const { // // Processes the arguments and returns a result, using // // std::get<N>(args) to get the N-th (0-based) argument in the tuple. // } // ... // }; // // Then the user creates the polymorphic action using // MakePolymorphicAction(object) where object has type FooAction. See // the definition of Return(void) and SetArgumentPointee<N>(value) for // complete examples. template <typename Impl> class PolymorphicAction { public: explicit PolymorphicAction(const Impl& impl) : impl_(impl) {} template <typename F> operator Action<F>() const { return Action<F>(new MonomorphicImpl<F>(impl_)); } private: template <typename F> class MonomorphicImpl : public ActionInterface<F> { public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} Result Perform(const ArgumentTuple& args) override { return impl_.template Perform<Result>(args); } private: Impl impl_; }; Impl impl_; }; // Creates an Action from its implementation and returns it. The // created Action object owns the implementation. template <typename F> Action<F> MakeAction(ActionInterface<F>* impl) { return Action<F>(impl); } // Creates a polymorphic action from its implementation. This is // easier to use than the PolymorphicAction<Impl> constructor as it // doesn't require you to explicitly write the template argument, e.g. // // MakePolymorphicAction(foo); // vs // PolymorphicAction<TypeOfFoo>(foo); template <typename Impl> inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) { return PolymorphicAction<Impl>(impl); } namespace internal { // Helper struct to specialize ReturnAction to execute a move instead of a copy // on return. Useful for move-only types, but could be used on any type. template <typename T> struct ByMoveWrapper { explicit ByMoveWrapper(T value) : payload(std::move(value)) {} T payload; }; // The general implementation of Return(R). Specializations follow below. template <typename R> class ReturnAction final { public: explicit ReturnAction(R value) : value_(std::move(value)) {} template <typename U, typename... Args, typename = typename std::enable_if<conjunction< // See the requirements documented on Return. negation<std::is_same<void, U>>, // negation<std::is_reference<U>>, // std::is_convertible<R, U>, // std::is_move_constructible<U>>::value>::type> operator OnceAction<U(Args...)>() && { // NOLINT return Impl<U>(std::move(value_)); } template <typename U, typename... Args, typename = typename std::enable_if<conjunction< // See the requirements documented on Return. negation<std::is_same<void, U>>, // negation<std::is_reference<U>>, // std::is_convertible<const R&, U>, // std::is_copy_constructible<U>>::value>::type> operator Action<U(Args...)>() const { // NOLINT return Impl<U>(value_); } private: // Implements the Return(x) action for a mock function that returns type U. template <typename U> class Impl final { public: // The constructor used when the return value is allowed to move from the // input value (i.e. we are converting to OnceAction). explicit Impl(R&& input_value) : state_(new State(std::move(input_value))) {} // The constructor used when the return value is not allowed to move from // the input value (i.e. we are converting to Action). explicit Impl(const R& input_value) : state_(new State(input_value)) {} U operator()() && { return std::move(state_->value); } U operator()() const& { return state_->value; } private: // We put our state on the heap so that the compiler-generated copy/move // constructors work correctly even when U is a reference-like type. This is // necessary only because we eagerly create State::value (see the note on // that symbol for details). If we instead had only the input value as a // member then the default constructors would work fine. // // For example, when R is std::string and U is std::string_view, value is a // reference to the string backed by input_value. The copy constructor would // copy both, so that we wind up with a new input_value object (with the // same contents) and a reference to the *old* input_value object rather // than the new one. struct State { explicit State(const R& input_value_in) : input_value(input_value_in), // Make an implicit conversion to Result before initializing the U // object we store, avoiding calling any explicit constructor of U // from R. // // This simulates the language rules: a function with return type U // that does `return R()` requires R to be implicitly convertible to // U, and uses that path for the conversion, even U Result has an // explicit constructor from R. value(ImplicitCast_<U>(internal::as_const(input_value))) {} // As above, but for the case where we're moving from the ReturnAction // object because it's being used as a OnceAction. explicit State(R&& input_value_in) : input_value(std::move(input_value_in)), // For the same reason as above we make an implicit conversion to U // before initializing the value. // // Unlike above we provide the input value as an rvalue to the // implicit conversion because this is a OnceAction: it's fine if it // wants to consume the input value. value(ImplicitCast_<U>(std::move(input_value))) {} // A copy of the value originally provided by the user. We retain this in // addition to the value of the mock function's result type below in case // the latter is a reference-like type. See the std::string_view example // in the documentation on Return. R input_value; // The value we actually return, as the type returned by the mock function // itself. // // We eagerly initialize this here, rather than lazily doing the implicit // conversion automatically each time Perform is called, for historical // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126) // made the Action<U()> conversion operator eagerly convert the R value to // U, but without keeping the R alive. This broke the use case discussed // in the documentation for Return, making reference-like types such as // std::string_view not safe to use as U where the input type R is a // value-like type such as std::string. // // The example the commit gave was not very clear, nor was the issue // thread (https://github.com/google/googlemock/issues/86), but it seems // the worry was about reference-like input types R that flatten to a // value-like type U when being implicitly converted. An example of this // is std::vector<bool>::reference, which is often a proxy type with an // reference to the underlying vector: // // // Helper method: have the mock function return bools according // // to the supplied script. // void SetActions(MockFunction<bool(size_t)>& mock, // const std::vector<bool>& script) { // for (size_t i = 0; i < script.size(); ++i) { // EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i])); // } // } // // TEST(Foo, Bar) { // // Set actions using a temporary vector, whose operator[] // // returns proxy objects that references that will be // // dangling once the call to SetActions finishes and the // // vector is destroyed. // MockFunction<bool(size_t)> mock; // SetActions(mock, {false, true}); // // EXPECT_FALSE(mock.AsStdFunction()(0)); // EXPECT_TRUE(mock.AsStdFunction()(1)); // } // // This eager conversion helps with a simple case like this, but doesn't // fully make these types work in general. For example the following still // uses a dangling reference: // // TEST(Foo, Baz) { // MockFunction<std::vector<std::string>()> mock; // // // Return the same vector twice, and then the empty vector // // thereafter. // auto action = Return(std::initializer_list<std::string>{ // "taco", "burrito", // }); // // EXPECT_CALL(mock, Call) // .WillOnce(action) // .WillOnce(action) // .WillRepeatedly(Return(std::vector<std::string>{})); // // EXPECT_THAT(mock.AsStdFunction()(), // ElementsAre("taco", "burrito")); // EXPECT_THAT(mock.AsStdFunction()(), // ElementsAre("taco", "burrito")); // EXPECT_THAT(mock.AsStdFunction()(), IsEmpty()); // } // U value; }; const std::shared_ptr<State> state_; }; R value_; }; // A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T. // // This version applies the type system-defeating hack of moving from T even in // the const call operator, checking at runtime that it isn't called more than // once, since the user has declared their intent to do so by using ByMove. template <typename T> class ReturnAction<ByMoveWrapper<T>> final { public: explicit ReturnAction(ByMoveWrapper<T> wrapper) : state_(new State(std::move(wrapper.payload))) {} T operator()() const { GTEST_CHECK_(!state_->called) << "A ByMove() action must be performed at most once."; state_->called = true; return std::move(state_->value); } private: // We store our state on the heap so that we are copyable as required by // Action, despite the fact that we are stateful and T may not be copyable. struct State { explicit State(T&& value_in) : value(std::move(value_in)) {} T value; bool called = false; }; const std::shared_ptr<State> state_; }; // Implements the ReturnNull() action. class ReturnNullAction { public: // Allows ReturnNull() to be used in any pointer-returning function. In C++11 // this is enforced by returning nullptr, and in non-C++11 by asserting a // pointer type on compile time. template <typename Result, typename ArgumentTuple> static Result Perform(const ArgumentTuple&) { return nullptr; } }; // Implements the Return() action. class ReturnVoidAction { public: // Allows Return() to be used in any void-returning function. template <typename Result, typename ArgumentTuple> static void Perform(const ArgumentTuple&) { static_assert(std::is_void<Result>::value, "Result should be void."); } }; // Implements the polymorphic ReturnRef(x) action, which can be used // in any function that returns a reference to the type of x, // regardless of the argument types. template <typename T> class ReturnRefAction { public: // Constructs a ReturnRefAction object from the reference to be returned. explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT // This template type conversion operator allows ReturnRef(x) to be // used in ANY function that returns a reference to x's type. template <typename F> operator Action<F>() const { typedef typename Function<F>::Result Result; // Asserts that the function return type is a reference. This // catches the user error of using ReturnRef(x) when Return(x) // should be used, and generates some helpful error message. static_assert(std::is_reference<Result>::value, "use Return instead of ReturnRef to return a value"); return Action<F>(new Impl<F>(ref_)); } private: // Implements the ReturnRef(x) action for a particular function type F. template <typename F> class Impl : public ActionInterface<F> { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple; explicit Impl(T& ref) : ref_(ref) {} // NOLINT Result Perform(const ArgumentTuple&) override { return ref_; } private: T& ref_; }; T& ref_; }; // Implements the polymorphic ReturnRefOfCopy(x) action, which can be // used in any function that returns a reference to the type of x, // regardless of the argument types. template <typename T> class ReturnRefOfCopyAction { public: // Constructs a ReturnRefOfCopyAction object from the reference to // be returned. explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT // This template type conversion operator allows ReturnRefOfCopy(x) to be // used in ANY function that returns a reference to x's type. template <typename F> operator Action<F>() const { typedef typename Function<F>::Result Result; // Asserts that the function return type is a reference. This // catches the user error of using ReturnRefOfCopy(x) when Return(x) // should be used, and generates some helpful error message. static_assert(std::is_reference<Result>::value, "use Return instead of ReturnRefOfCopy to return a value"); return Action<F>(new Impl<F>(value_)); } private: // Implements the ReturnRefOfCopy(x) action for a particular function type F. template <typename F> class Impl : public ActionInterface<F> { public: typedef typename Function<F>::Result Result; typedef typename Function<F>::ArgumentTuple ArgumentTuple; explicit Impl(const T& value) : value_(value) {} // NOLINT Result Perform(const ArgumentTuple&) override { return value_; } private: T value_; }; const T value_; }; // Implements the polymorphic ReturnRoundRobin(v) action, which can be // used in any function that returns the element_type of v. template <typename T> class ReturnRoundRobinAction { public: explicit ReturnRoundRobinAction(std::vector<T> values) { GTEST_CHECK_(!values.empty()) << "ReturnRoundRobin requires at least one element."; state_->values = std::move(values); } template <typename... Args> T operator()(Args&&...) const { return state_->Next(); } private: struct State { T Next() { T ret_val = values[i++]; if (i == values.size()) i = 0; return ret_val; } std::vector<T> values; size_t i = 0; }; std::shared_ptr<State> state_ = std::make_shared<State>(); }; // Implements the polymorphic DoDefault() action. class DoDefaultAction { public: // This template type conversion operator allows DoDefault() to be // used in any function. template <typename F> operator Action<F>() const { return Action<F>(); } // NOLINT }; // Implements the Assign action to set a given pointer referent to a // particular value. template <typename T1, typename T2> class AssignAction { public: AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {} template <typename Result, typename ArgumentTuple> void Perform(const ArgumentTuple& /* args */) const { *ptr_ = value_; } private: T1* const ptr_; const T2 value_; }; #if !GTEST_OS_WINDOWS_MOBILE // Implements the SetErrnoAndReturn action to simulate return from // various system calls and libc functions. template <typename T> class SetErrnoAndReturnAction { public: SetErrnoAndReturnAction(int errno_value, T result) : errno_(errno_value), result_(result) {} template <typename Result, typename ArgumentTuple> Result Perform(const ArgumentTuple& /* args */) const { errno = errno_; return result_; } private: const int errno_; const T result_; }; #endif // !GTEST_OS_WINDOWS_MOBILE // Implements the SetArgumentPointee<N>(x) action for any function // whose N-th argument (0-based) is a pointer to x's type. template <size_t N, typename A, typename = void> struct SetArgumentPointeeAction { A value; template <typename... Args> void operator()(const Args&... args) const { *::std::get<N>(std::tie(args...)) = value; } }; // Implements the Invoke(object_ptr, &Class::Method) action. template <class Class, typename MethodPtr> struct InvokeMethodAction { Class* const obj_ptr; const MethodPtr method_ptr; template <typename... Args> auto operator()(Args&&... args) const -> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) { return (obj_ptr->*method_ptr)(std::forward<Args>(args)...); } }; // Implements the InvokeWithoutArgs(f) action. The template argument // FunctionImpl is the implementation type of f, which can be either a // function pointer or a functor. InvokeWithoutArgs(f) can be used as an // Action<F> as long as f's type is compatible with F. template <typename FunctionImpl> struct InvokeWithoutArgsAction { FunctionImpl function_impl; // Allows InvokeWithoutArgs(f) to be used as any action whose type is // compatible with f. template <typename... Args> auto operator()(const Args&...) -> decltype(function_impl()) { return function_impl(); } }; // Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action. template <class Class, typename MethodPtr> struct InvokeMethodWithoutArgsAction { Class* const obj_ptr; const MethodPtr method_ptr; using ReturnType = decltype((std::declval<Class*>()->*std::declval<MethodPtr>())()); template <typename... Args> ReturnType operator()(const Args&...) const { return (obj_ptr->*method_ptr)(); } }; // Implements the IgnoreResult(action) action. template <typename A> class IgnoreResultAction { public: explicit IgnoreResultAction(const A& action) : action_(action) {} template <typename F> operator Action<F>() const { // Assert statement belongs here because this is the best place to verify // conditions on F. It produces the clearest error messages // in most compilers. // Impl really belongs in this scope as a local class but can't // because MSVC produces duplicate symbols in different translation units // in this case. Until MS fixes that bug we put Impl into the class scope // and put the typedef both here (for use in assert statement) and // in the Impl class. But both definitions must be the same. typedef typename internal::Function<F>::Result Result; // Asserts at compile time that F returns void. static_assert(std::is_void<Result>::value, "Result type should be void."); return Action<F>(new Impl<F>(action_)); } private: template <typename F> class Impl : public ActionInterface<F> { public: typedef typename internal::Function<F>::Result Result; typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple; explicit Impl(const A& action) : action_(action) {} void Perform(const ArgumentTuple& args) override { // Performs the action and ignores its result. action_.Perform(args); } private: // Type OriginalFunction is the same as F except that its return // type is IgnoredValue. typedef typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction; const Action<OriginalFunction> action_; }; const A action_; }; template <typename InnerAction, size_t... I> struct WithArgsAction { InnerAction inner_action; // The signature of the function as seen by the inner action, given an out // action with the given result and argument types. template <typename R, typename... Args> using InnerSignature = R(typename std::tuple_element<I, std::tuple<Args...>>::type...); // Rather than a call operator, we must define conversion operators to // particular action types. This is necessary for embedded actions like // DoDefault(), which rely on an action conversion operators rather than // providing a call operator because even with a particular set of arguments // they don't have a fixed return type. template < typename R, typename... Args, typename std::enable_if< std::is_convertible<InnerAction, // Unfortunately we can't use the InnerSignature // alias here; MSVC complains about the I // parameter pack not being expanded (error C3520) // despite it being expanded in the type alias. // TupleElement is also an MSVC workaround. // See its definition for details. OnceAction<R(internal::TupleElement< I, std::tuple<Args...>>...)>>::value, int>::type = 0> operator OnceAction<R(Args...)>() && { // NOLINT struct OA { OnceAction<InnerSignature<R, Args...>> inner_action; R operator()(Args&&... args) && { return std::move(inner_action) .Call(std::get<I>( std::forward_as_tuple(std::forward<Args>(args)...))...); } }; return OA{std::move(inner_action)}; } template < typename R, typename... Args, typename std::enable_if< std::is_convertible<const InnerAction&, // Unfortunately we can't use the InnerSignature // alias here; MSVC complains about the I // parameter pack not being expanded (error C3520) // despite it being expanded in the type alias. // TupleElement is also an MSVC workaround. // See its definition for details. Action<R(internal::TupleElement< I, std::tuple<Args...>>...)>>::value, int>::type = 0> operator Action<R(Args...)>() const { // NOLINT Action<InnerSignature<R, Args...>> converted(inner_action); return [converted](Args&&... args) -> R { return converted.Perform(std::forward_as_tuple( std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...)); }; } }; template <typename... Actions> class DoAllAction; // Base case: only a single action. template <typename FinalAction> class DoAllAction<FinalAction> { public: struct UserConstructorTag {}; template <typename T> explicit DoAllAction(UserConstructorTag, T&& action) : final_action_(std::forward<T>(action)) {} // Rather than a call operator, we must define conversion operators to // particular action types. This is necessary for embedded actions like // DoDefault(), which rely on an action conversion operators rather than // providing a call operator because even with a particular set of arguments // they don't have a fixed return type. template <typename R, typename... Args, typename std::enable_if< std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value, int>::type = 0> operator OnceAction<R(Args...)>() && { // NOLINT return std::move(final_action_); } template < typename R, typename... Args, typename std::enable_if< std::is_convertible<const FinalAction&, Action<R(Args...)>>::value, int>::type = 0> operator Action<R(Args...)>() const { // NOLINT return final_action_; } private: FinalAction final_action_; }; // Recursive case: support N actions by calling the initial action and then // calling through to the base class containing N-1 actions. template <typename InitialAction, typename... OtherActions> class DoAllAction<InitialAction, OtherActions...> : private DoAllAction<OtherActions...> { private: using Base = DoAllAction<OtherActions...>; // The type of reference that should be provided to an initial action for a // mocked function parameter of type T. // // There are two quirks here: // // * Unlike most forwarding functions, we pass scalars through by value. // This isn't strictly necessary because an lvalue reference would work // fine too and be consistent with other non-reference types, but it's // perhaps less surprising. // // For example if the mocked function has signature void(int), then it // might seem surprising for the user's initial action to need to be // convertible to Action<void(const int&)>. This is perhaps less // surprising for a non-scalar type where there may be a performance // impact, or it might even be impossible, to pass by value. // // * More surprisingly, `const T&` is often not a const reference type. // By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to // U& or U&& for some non-scalar type U, then InitialActionArgType<T> is // U&. In other words, we may hand over a non-const reference. // // So for example, given some non-scalar type Obj we have the following // mappings: // // T InitialActionArgType<T> // ------- ----------------------- // Obj const Obj& // Obj& Obj& // Obj&& Obj& // const Obj const Obj& // const Obj& const Obj& // const Obj&& const Obj& // // In other words, the initial actions get a mutable view of an non-scalar // argument if and only if the mock function itself accepts a non-const // reference type. They are never given an rvalue reference to an // non-scalar type. // // This situation makes sense if you imagine use with a matcher that is // designed to write through a reference. For example, if the caller wants // to fill in a reference argument and then return a canned value: // // EXPECT_CALL(mock, Call) // .WillOnce(DoAll(SetArgReferee<0>(17), Return(19))); // template <typename T> using InitialActionArgType = typename std::conditional<std::is_scalar<T>::value, T, const T&>::type; public: struct UserConstructorTag {}; template <typename T, typename... U> explicit DoAllAction(UserConstructorTag, T&& initial_action, U&&... other_actions) : Base({}, std::forward<U>(other_actions)...), initial_action_(std::forward<T>(initial_action)) {} template <typename R, typename... Args, typename std::enable_if< conjunction< // Both the initial action and the rest must support // conversion to OnceAction. std::is_convertible< InitialAction, OnceAction<void(InitialActionArgType<Args>...)>>, std::is_convertible<Base, OnceAction<R(Args...)>>>::value, int>::type = 0> operator OnceAction<R(Args...)>() && { // NOLINT // Return an action that first calls the initial action with arguments // filtered through InitialActionArgType, then forwards arguments directly // to the base class to deal with the remaining actions. struct OA { OnceAction<void(InitialActionArgType<Args>...)> initial_action; OnceAction<R(Args...)> remaining_actions; R operator()(Args... args) && { std::move(initial_action) .Call(static_cast<InitialActionArgType<Args>>(args)...); return std::move(remaining_actions).Call(std::forward<Args>(args)...); } }; return OA{ std::move(initial_action_), std::move(static_cast<Base&>(*this)), }; } template < typename R, typename... Args, typename std::enable_if< conjunction< // Both the initial action and the rest must support conversion to // Action. std::is_convertible<const InitialAction&, Action<void(InitialActionArgType<Args>...)>>, std::is_convertible<const Base&, Action<R(Args...)>>>::value, int>::type = 0> operator Action<R(Args...)>() const { // NOLINT // Return an action that first calls the initial action with arguments // filtered through InitialActionArgType, then forwards arguments directly // to the base class to deal with the remaining actions. struct OA { Action<void(InitialActionArgType<Args>...)> initial_action; Action<R(Args...)> remaining_actions; R operator()(Args... args) const { initial_action.Perform(std::forward_as_tuple( static_cast<InitialActionArgType<Args>>(args)...)); return remaining_actions.Perform( std::forward_as_tuple(std::forward<Args>(args)...)); } }; return OA{ initial_action_, static_cast<const Base&>(*this), }; } private: InitialAction initial_action_; }; template <typename T, typename... Params> struct ReturnNewAction { T* operator()() const { return internal::Apply( [](const Params&... unpacked_params) { return new T(unpacked_params...); }, params); } std::tuple<Params...> params; }; template <size_t k> struct ReturnArgAction { template <typename... Args, typename = typename std::enable_if<(k < sizeof...(Args))>::type> auto operator()(Args&&... args) const -> decltype(std::get<k>( std::forward_as_tuple(std::forward<Args>(args)...))) { return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...)); } }; template <size_t k, typename Ptr> struct SaveArgAction { Ptr pointer; template <typename... Args> void operator()(const Args&... args) const { *pointer = std::get<k>(std::tie(args...)); } }; template <size_t k, typename Ptr> struct SaveArgPointeeAction { Ptr pointer; template <typename... Args> void operator()(const Args&... args) const { *pointer = *std::get<k>(std::tie(args...)); } }; template <size_t k, typename T> struct SetArgRefereeAction { T value; template <typename... Args> void operator()(Args&&... args) const { using argk_type = typename ::std::tuple_element<k, std::tuple<Args...>>::type; static_assert(std::is_lvalue_reference<argk_type>::value, "Argument must be a reference type."); std::get<k>(std::tie(args...)) = value; } }; template <size_t k, typename I1, typename I2> struct SetArrayArgumentAction { I1 first; I2 last; template <typename... Args> void operator()(const Args&... args) const { auto value = std::get<k>(std::tie(args...)); for (auto it = first; it != last; ++it, (void)++value) { *value = *it; } } }; template <size_t k> struct DeleteArgAction { template <typename... Args> void operator()(const Args&... args) const { delete std::get<k>(std::tie(args...)); } }; template <typename Ptr> struct ReturnPointeeAction { Ptr pointer; template <typename... Args> auto operator()(const Args&...) const -> decltype(*pointer) { return *pointer; } }; #if GTEST_HAS_EXCEPTIONS template <typename T> struct ThrowAction { T exception; // We use a conversion operator to adapt to any return type. template <typename R, typename... Args> operator Action<R(Args...)>() const { // NOLINT T copy = exception; return [copy](Args...) -> R { throw copy; }; } }; #endif // GTEST_HAS_EXCEPTIONS } // namespace internal // An Unused object can be implicitly constructed from ANY value. // This is handy when defining actions that ignore some or all of the // mock function arguments. For example, given // // MOCK_METHOD3(Foo, double(const string& label, double x, double y)); // MOCK_METHOD3(Bar, double(int index, double x, double y)); // // instead of // // double DistanceToOriginWithLabel(const string& label, double x, double y) { // return sqrt(x*x + y*y); // } // double DistanceToOriginWithIndex(int index, double x, double y) { // return sqrt(x*x + y*y); // } // ... // EXPECT_CALL(mock, Foo("abc", _, _)) // .WillOnce(Invoke(DistanceToOriginWithLabel)); // EXPECT_CALL(mock, Bar(5, _, _)) // .WillOnce(Invoke(DistanceToOriginWithIndex)); // // you could write // // // We can declare any uninteresting argument as Unused. // double DistanceToOrigin(Unused, double x, double y) { // return sqrt(x*x + y*y); // } // ... // EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin)); // EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin)); typedef internal::IgnoredValue Unused; // Creates an action that does actions a1, a2, ..., sequentially in // each invocation. All but the last action will have a readonly view of the // arguments. template <typename... Action> internal::DoAllAction<typename std::decay<Action>::type...> DoAll( Action&&... action) { return internal::DoAllAction<typename std::decay<Action>::type...>( {}, std::forward<Action>(action)...); } // WithArg<k>(an_action) creates an action that passes the k-th // (0-based) argument of the mock function to an_action and performs // it. It adapts an action accepting one argument to one that accepts // multiple arguments. For convenience, we also provide // WithArgs<k>(an_action) (defined below) as a synonym. template <size_t k, typename InnerAction> internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg( InnerAction&& action) { return {std::forward<InnerAction>(action)}; } // WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes // the selected arguments of the mock function to an_action and // performs it. It serves as an adaptor between actions with // different argument lists. template <size_t k, size_t... ks, typename InnerAction> internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...> WithArgs(InnerAction&& action) { return {std::forward<InnerAction>(action)}; } // WithoutArgs(inner_action) can be used in a mock function with a // non-empty argument list to perform inner_action, which takes no // argument. In other words, it adapts an action accepting no // argument to one that accepts (and ignores) arguments. template <typename InnerAction> internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs( InnerAction&& action) { return {std::forward<InnerAction>(action)}; } // Creates an action that returns a value. // // The returned type can be used with a mock function returning a non-void, // non-reference type U as follows: // // * If R is convertible to U and U is move-constructible, then the action can // be used with WillOnce. // // * If const R& is convertible to U and U is copy-constructible, then the // action can be used with both WillOnce and WillRepeatedly. // // The mock expectation contains the R value from which the U return value is // constructed (a move/copy of the argument to Return). This means that the R // value will survive at least until the mock object's expectations are cleared // or the mock object is destroyed, meaning that U can safely be a // reference-like type such as std::string_view: // // // The mock function returns a view of a copy of the string fed to // // Return. The view is valid even after the action is performed. // MockFunction<std::string_view()> mock; // EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco"))); // const std::string_view result = mock.AsStdFunction()(); // EXPECT_EQ("taco", result); // template <typename R> internal::ReturnAction<R> Return(R value) { return internal::ReturnAction<R>(std::move(value)); } // Creates an action that returns NULL. inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() { return MakePolymorphicAction(internal::ReturnNullAction()); } // Creates an action that returns from a void function. inline PolymorphicAction<internal::ReturnVoidAction> Return() { return MakePolymorphicAction(internal::ReturnVoidAction()); } // Creates an action that returns the reference to a variable. template <typename R> inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT return internal::ReturnRefAction<R>(x); } // Prevent using ReturnRef on reference to temporary. template <typename R, R* = nullptr> internal::ReturnRefAction<R> ReturnRef(R&&) = delete; // Creates an action that returns the reference to a copy of the // argument. The copy is created when the action is constructed and // lives as long as the action. template <typename R> inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) { return internal::ReturnRefOfCopyAction<R>(x); } // DEPRECATED: use Return(x) directly with WillOnce. // // Modifies the parent action (a Return() action) to perform a move of the // argument instead of a copy. // Return(ByMove()) actions can only be executed once and will assert this // invariant. template <typename R> internal::ByMoveWrapper<R> ByMove(R x) { return internal::ByMoveWrapper<R>(std::move(x)); } // Creates an action that returns an element of `vals`. Calling this action will // repeatedly return the next value from `vals` until it reaches the end and // will restart from the beginning. template <typename T> internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) { return internal::ReturnRoundRobinAction<T>(std::move(vals)); } // Creates an action that returns an element of `vals`. Calling this action will // repeatedly return the next value from `vals` until it reaches the end and // will restart from the beginning. template <typename T> internal::ReturnRoundRobinAction<T> ReturnRoundRobin( std::initializer_list<T> vals) { return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals)); } // Creates an action that does the default action for the give mock function. inline internal::DoDefaultAction DoDefault() { return internal::DoDefaultAction(); } // Creates an action that sets the variable pointed by the N-th // (0-based) function argument to 'value'. template <size_t N, typename T> internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) { return {std::move(value)}; } // The following version is DEPRECATED. template <size_t N, typename T> internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) { return {std::move(value)}; } // Creates an action that sets a pointer referent to a given value. template <typename T1, typename T2> PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) { return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val)); } #if !GTEST_OS_WINDOWS_MOBILE // Creates an action that sets errno and returns the appropriate error. template <typename T> PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn( int errval, T result) { return MakePolymorphicAction( internal::SetErrnoAndReturnAction<T>(errval, result)); } #endif // !GTEST_OS_WINDOWS_MOBILE // Various overloads for Invoke(). // Legacy function. // Actions can now be implicitly constructed from callables. No need to create // wrapper objects. // This function exists for backwards compatibility. template <typename FunctionImpl> typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) { return std::forward<FunctionImpl>(function_impl); } // Creates an action that invokes the given method on the given object // with the mock function's arguments. template <class Class, typename MethodPtr> internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr, MethodPtr method_ptr) { return {obj_ptr, method_ptr}; } // Creates an action that invokes 'function_impl' with no argument. template <typename FunctionImpl> internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type> InvokeWithoutArgs(FunctionImpl function_impl) { return {std::move(function_impl)}; } // Creates an action that invokes the given method on the given object // with no argument. template <class Class, typename MethodPtr> internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs( Class* obj_ptr, MethodPtr method_ptr) { return {obj_ptr, method_ptr}; } // Creates an action that performs an_action and throws away its // result. In other words, it changes the return type of an_action to // void. an_action MUST NOT return void, or the code won't compile. template <typename A> inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) { return internal::IgnoreResultAction<A>(an_action); } // Creates a reference wrapper for the given L-value. If necessary, // you can explicitly specify the type of the reference. For example, // suppose 'derived' is an object of type Derived, ByRef(derived) // would wrap a Derived&. If you want to wrap a const Base& instead, // where Base is a base class of Derived, just write: // // ByRef<const Base>(derived) // // N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper. // However, it may still be used for consistency with ByMove(). template <typename T> inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT return ::std::reference_wrapper<T>(l_value); } // The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new // instance of type T, constructed on the heap with constructor arguments // a1, a2, ..., and a_k. The caller assumes ownership of the returned value. template <typename T, typename... Params> internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew( Params&&... params) { return {std::forward_as_tuple(std::forward<Params>(params)...)}; } // Action ReturnArg<k>() returns the k-th argument of the mock function. template <size_t k> internal::ReturnArgAction<k> ReturnArg() { return {}; } // Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the // mock function to *pointer. template <size_t k, typename Ptr> internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) { return {pointer}; } // Action SaveArgPointee<k>(pointer) saves the value pointed to // by the k-th (0-based) argument of the mock function to *pointer. template <size_t k, typename Ptr> internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) { return {pointer}; } // Action SetArgReferee<k>(value) assigns 'value' to the variable // referenced by the k-th (0-based) argument of the mock function. template <size_t k, typename T> internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee( T&& value) { return {std::forward<T>(value)}; } // Action SetArrayArgument<k>(first, last) copies the elements in // source range [first, last) to the array pointed to by the k-th // (0-based) argument, which can be either a pointer or an // iterator. The action does not take ownership of the elements in the // source range. template <size_t k, typename I1, typename I2> internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first, I2 last) { return {first, last}; } // Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock // function. template <size_t k> internal::DeleteArgAction<k> DeleteArg() { return {}; } // This action returns the value pointed to by 'pointer'. template <typename Ptr> internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) { return {pointer}; } // Action Throw(exception) can be used in a mock function of any type // to throw the given exception. Any copyable value can be thrown. #if GTEST_HAS_EXCEPTIONS template <typename T> internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) { return {std::forward<T>(exception)}; } #endif // GTEST_HAS_EXCEPTIONS namespace internal { // A macro from the ACTION* family (defined later in gmock-generated-actions.h) // defines an action that can be used in a mock function. Typically, // these actions only care about a subset of the arguments of the mock // function. For example, if such an action only uses the second // argument, it can be used in any mock function that takes >= 2 // arguments where the type of the second argument is compatible. // // Therefore, the action implementation must be prepared to take more // arguments than it needs. The ExcessiveArg type is used to // represent those excessive arguments. In order to keep the compiler // error messages tractable, we define it in the testing namespace // instead of testing::internal. However, this is an INTERNAL TYPE // and subject to change without notice, so a user MUST NOT USE THIS // TYPE DIRECTLY. struct ExcessiveArg {}; // Builds an implementation of an Action<> for some particular signature, using // a class defined by an ACTION* macro. template <typename F, typename Impl> struct ActionImpl; template <typename Impl> struct ImplBase { struct Holder { // Allows each copy of the Action<> to get to the Impl. explicit operator const Impl&() const { return *ptr; } std::shared_ptr<Impl> ptr; }; using type = typename std::conditional<std::is_constructible<Impl>::value, Impl, Holder>::type; }; template <typename R, typename... Args, typename Impl> struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type { using Base = typename ImplBase<Impl>::type; using function_type = R(Args...); using args_type = std::tuple<Args...>; ActionImpl() = default; // Only defined if appropriate for Base. explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {} R operator()(Args&&... arg) const { static constexpr size_t kMaxArgs = sizeof...(Args) <= 10 ? sizeof...(Args) : 10; return Apply(MakeIndexSequence<kMaxArgs>{}, MakeIndexSequence<10 - kMaxArgs>{}, args_type{std::forward<Args>(arg)...}); } template <std::size_t... arg_id, std::size_t... excess_id> R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>, const args_type& args) const { // Impl need not be specific to the signature of action being implemented; // only the implementing function body needs to have all of the specific // types instantiated. Up to 10 of the args that are provided by the // args_type get passed, followed by a dummy of unspecified type for the // remainder up to 10 explicit args. static constexpr ExcessiveArg kExcessArg{}; return static_cast<const Impl&>(*this) .template gmock_PerformImpl< /*function_type=*/function_type, /*return_type=*/R, /*args_type=*/args_type, /*argN_type=*/ typename std::tuple_element<arg_id, args_type>::type...>( /*args=*/args, std::get<arg_id>(args)..., ((void)excess_id, kExcessArg)...); } }; // Stores a default-constructed Impl as part of the Action<>'s // std::function<>. The Impl should be trivial to copy. template <typename F, typename Impl> ::testing::Action<F> MakeAction() { return ::testing::Action<F>(ActionImpl<F, Impl>()); } // Stores just the one given instance of Impl. template <typename F, typename Impl> ::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) { return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl))); } #define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \ , const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_ #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \ const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \ GMOCK_INTERNAL_ARG_UNUSED, , 10) #define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i #define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \ const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10) #define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type #define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \ GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10)) #define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type #define GMOCK_ACTION_TYPENAME_PARAMS_(params) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params)) #define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type #define GMOCK_ACTION_TYPE_PARAMS_(params) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params)) #define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \ , param##_type gmock_p##i #define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params)) #define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \ , std::forward<param##_type>(gmock_p##i) #define GMOCK_ACTION_GVALUE_PARAMS_(params) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params)) #define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \ , param(::std::forward<param##_type>(gmock_p##i)) #define GMOCK_ACTION_INIT_PARAMS_(params) \ GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params)) #define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param; #define GMOCK_ACTION_FIELD_PARAMS_(params) \ GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params) #define GMOCK_INTERNAL_ACTION(name, full_name, params) \ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ class full_name { \ public: \ explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ : impl_(std::make_shared<gmock_Impl>( \ GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \ full_name(const full_name&) = default; \ full_name(full_name&&) noexcept = default; \ template <typename F> \ operator ::testing::Action<F>() const { \ return ::testing::internal::MakeAction<F>(impl_); \ } \ \ private: \ class gmock_Impl { \ public: \ explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \ : GMOCK_ACTION_INIT_PARAMS_(params) {} \ template <typename function_type, typename return_type, \ typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ GMOCK_ACTION_FIELD_PARAMS_(params) \ }; \ std::shared_ptr<const gmock_Impl> impl_; \ }; \ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \ GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \ return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \ GMOCK_ACTION_GVALUE_PARAMS_(params)); \ } \ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \ template <typename function_type, typename return_type, typename args_type, \ GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ return_type \ full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const } // namespace internal // Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored. #define ACTION(name) \ class name##Action { \ public: \ explicit name##Action() noexcept {} \ name##Action(const name##Action&) noexcept {} \ template <typename F> \ operator ::testing::Action<F>() const { \ return ::testing::internal::MakeAction<F, gmock_Impl>(); \ } \ \ private: \ class gmock_Impl { \ public: \ template <typename function_type, typename return_type, \ typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \ }; \ }; \ inline name##Action name() GTEST_MUST_USE_RESULT_; \ inline name##Action name() { return name##Action(); } \ template <typename function_type, typename return_type, typename args_type, \ GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \ return_type name##Action::gmock_Impl::gmock_PerformImpl( \ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const #define ACTION_P(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__)) #define ACTION_P2(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__)) #define ACTION_P3(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__)) #define ACTION_P4(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__)) #define ACTION_P5(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__)) #define ACTION_P6(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__)) #define ACTION_P7(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__)) #define ACTION_P8(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__)) #define ACTION_P9(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__)) #define ACTION_P10(name, ...) \ GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__)) } // namespace testing GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100 #endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_