// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file implements Matcher, Matcher, and // utilities for defining matchers. #include "gmock/gmock-matchers.h" #include "gmock/gmock-generated-matchers.h" #include #include #include namespace testing { // Constructs a matcher that matches a const string& whose value is // equal to s. Matcher::Matcher(const internal::string& s) { *this = Eq(s); } // Constructs a matcher that matches a const string& whose value is // equal to s. Matcher::Matcher(const char* s) { *this = Eq(internal::string(s)); } // Constructs a matcher that matches a string whose value is equal to s. Matcher::Matcher(const internal::string& s) { *this = Eq(s); } // Constructs a matcher that matches a string whose value is equal to s. Matcher::Matcher(const char* s) { *this = Eq(internal::string(s)); } #if GTEST_HAS_STRING_PIECE_ // Constructs a matcher that matches a const StringPiece& whose value is // equal to s. Matcher::Matcher(const internal::string& s) { *this = Eq(s); } // Constructs a matcher that matches a const StringPiece& whose value is // equal to s. Matcher::Matcher(const char* s) { *this = Eq(internal::string(s)); } // Constructs a matcher that matches a const StringPiece& whose value is // equal to s. Matcher::Matcher(StringPiece s) { *this = Eq(s.ToString()); } // Constructs a matcher that matches a StringPiece whose value is equal to s. Matcher::Matcher(const internal::string& s) { *this = Eq(s); } // Constructs a matcher that matches a StringPiece whose value is equal to s. Matcher::Matcher(const char* s) { *this = Eq(internal::string(s)); } // Constructs a matcher that matches a StringPiece whose value is equal to s. Matcher::Matcher(StringPiece s) { *this = Eq(s.ToString()); } #endif // GTEST_HAS_STRING_PIECE_ namespace internal { // Joins a vector of strings as if they are fields of a tuple; returns // the joined string. GTEST_API_ string JoinAsTuple(const Strings& fields) { switch (fields.size()) { case 0: return ""; case 1: return fields[0]; default: string result = "(" + fields[0]; for (size_t i = 1; i < fields.size(); i++) { result += ", "; result += fields[i]; } result += ")"; return result; } } // Returns the description for a matcher defined using the MATCHER*() // macro where the user-supplied description string is "", if // 'negation' is false; otherwise returns the description of the // negation of the matcher. 'param_values' contains a list of strings // that are the print-out of the matcher's parameters. GTEST_API_ string FormatMatcherDescription(bool negation, const char* matcher_name, const Strings& param_values) { string result = ConvertIdentifierNameToWords(matcher_name); if (param_values.size() >= 1) result += " " + JoinAsTuple(param_values); return negation ? "not (" + result + ")" : result; } // FindMaxBipartiteMatching and its helper class. // // Uses the well-known Ford-Fulkerson max flow method to find a maximum // bipartite matching. Flow is considered to be from left to right. // There is an implicit source node that is connected to all of the left // nodes, and an implicit sink node that is connected to all of the // right nodes. All edges have unit capacity. // // Neither the flow graph nor the residual flow graph are represented // explicitly. Instead, they are implied by the information in 'graph' and // a vector called 'left_' whose elements are initialized to the // value kUnused. This represents the initial state of the algorithm, // where the flow graph is empty, and the residual flow graph has the // following edges: // - An edge from source to each left_ node // - An edge from each right_ node to sink // - An edge from each left_ node to each right_ node, if the // corresponding edge exists in 'graph'. // // When the TryAugment() method adds a flow, it sets left_[l] = r for some // nodes l and r. This induces the following changes: // - The edges (source, l), (l, r), and (r, sink) are added to the // flow graph. // - The same three edges are removed from the residual flow graph. // - The reverse edges (l, source), (r, l), and (sink, r) are added // to the residual flow graph, which is a directional graph // representing unused flow capacity. // // When the method augments a flow (moving left_[l] from some r1 to some // other r2), this can be thought of as "undoing" the above steps with // respect to r1 and "redoing" them with respect to r2. // // It bears repeating that the flow graph and residual flow graph are // never represented explicitly, but can be derived by looking at the // information in 'graph' and in left_. // // As an optimization, there is a second vector called right_ which // does not provide any new information. Instead, it enables more // efficient queries about edges entering or leaving the right-side nodes // of the flow or residual flow graphs. The following invariants are // maintained: // // left[l] == kUnused or right[left[l]] == l // right[r] == kUnused or left[right[r]] == r // // . [ source ] . // . ||| . // . ||| . // . ||\--> left[0]=1 ---\ right[0]=-1 ----\ . // . || | | . // . |\---> left[1]=-1 \--> right[1]=0 ---\| . // . | || . // . \----> left[2]=2 ------> right[2]=2 --\|| . // . ||| . // . elements matchers vvv . // . [ sink ] . // // See Also: // [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method". // "Introduction to Algorithms (Second ed.)", pp. 651-664. // [2] "Ford-Fulkerson algorithm", Wikipedia, // 'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm' class MaxBipartiteMatchState { public: explicit MaxBipartiteMatchState(const MatchMatrix& graph) : graph_(&graph), left_(graph_->LhsSize(), kUnused), right_(graph_->RhsSize(), kUnused) { } // Returns the edges of a maximal match, each in the form {left, right}. ElementMatcherPairs Compute() { // 'seen' is used for path finding { 0: unseen, 1: seen }. ::std::vector seen; // Searches the residual flow graph for a path from each left node to // the sink in the residual flow graph, and if one is found, add flow // to the graph. It's okay to search through the left nodes once. The // edge from the implicit source node to each previously-visited left // node will have flow if that left node has any path to the sink // whatsoever. Subsequent augmentations can only add flow to the // network, and cannot take away that previous flow unit from the source. // Since the source-to-left edge can only carry one flow unit (or, // each element can be matched to only one matcher), there is no need // to visit the left nodes more than once looking for augmented paths. // The flow is known to be possible or impossible by looking at the // node once. for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { // Reset the path-marking vector and try to find a path from // source to sink starting at the left_[ilhs] node. GTEST_CHECK_(left_[ilhs] == kUnused) << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs]; // 'seen' initialized to 'graph_->RhsSize()' copies of 0. seen.assign(graph_->RhsSize(), 0); TryAugment(ilhs, &seen); } ElementMatcherPairs result; for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) { size_t irhs = left_[ilhs]; if (irhs == kUnused) continue; result.push_back(ElementMatcherPair(ilhs, irhs)); } return result; } private: static const size_t kUnused = static_cast(-1); // Perform a depth-first search from left node ilhs to the sink. If a // path is found, flow is added to the network by linking the left and // right vector elements corresponding each segment of the path. // Returns true if a path to sink was found, which means that a unit of // flow was added to the network. The 'seen' vector elements correspond // to right nodes and are marked to eliminate cycles from the search. // // Left nodes will only be explored at most once because they // are accessible from at most one right node in the residual flow // graph. // // Note that left_[ilhs] is the only element of left_ that TryAugment will // potentially transition from kUnused to another value. Any other // left_ element holding kUnused before TryAugment will be holding it // when TryAugment returns. // bool TryAugment(size_t ilhs, ::std::vector* seen) { for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { if ((*seen)[irhs]) continue; if (!graph_->HasEdge(ilhs, irhs)) continue; // There's an available edge from ilhs to irhs. (*seen)[irhs] = 1; // Next a search is performed to determine whether // this edge is a dead end or leads to the sink. // // right_[irhs] == kUnused means that there is residual flow from // right node irhs to the sink, so we can use that to finish this // flow path and return success. // // Otherwise there is residual flow to some ilhs. We push flow // along that path and call ourselves recursively to see if this // ultimately leads to sink. if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) { // Add flow from left_[ilhs] to right_[irhs]. left_[ilhs] = irhs; right_[irhs] = ilhs; return true; } } return false; } const MatchMatrix* graph_; // not owned // Each element of the left_ vector represents a left hand side node // (i.e. an element) and each element of right_ is a right hand side // node (i.e. a matcher). The values in the left_ vector indicate // outflow from that node to a node on the right_ side. The values // in the right_ indicate inflow, and specify which left_ node is // feeding that right_ node, if any. For example, left_[3] == 1 means // there's a flow from element #3 to matcher #1. Such a flow would also // be redundantly represented in the right_ vector as right_[1] == 3. // Elements of left_ and right_ are either kUnused or mutually // referent. Mutually referent means that left_[right_[i]] = i and // right_[left_[i]] = i. ::std::vector left_; ::std::vector right_; GTEST_DISALLOW_ASSIGN_(MaxBipartiteMatchState); }; const size_t MaxBipartiteMatchState::kUnused; GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) { return MaxBipartiteMatchState(g).Compute(); } static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs, ::std::ostream* stream) { typedef ElementMatcherPairs::const_iterator Iter; ::std::ostream& os = *stream; os << "{"; const char *sep = ""; for (Iter it = pairs.begin(); it != pairs.end(); ++it) { os << sep << "\n (" << "element #" << it->first << ", " << "matcher #" << it->second << ")"; sep = ","; } os << "\n}"; } // Tries to find a pairing, and explains the result. GTEST_API_ bool FindPairing(const MatchMatrix& matrix, MatchResultListener* listener) { ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix); size_t max_flow = matches.size(); bool result = (max_flow == matrix.RhsSize()); if (!result) { if (listener->IsInterested()) { *listener << "where no permutation of the elements can " "satisfy all matchers, and the closest match is " << max_flow << " of " << matrix.RhsSize() << " matchers with the pairings:\n"; LogElementMatcherPairVec(matches, listener->stream()); } return false; } if (matches.size() > 1) { if (listener->IsInterested()) { const char *sep = "where:\n"; for (size_t mi = 0; mi < matches.size(); ++mi) { *listener << sep << " - element #" << matches[mi].first << " is matched by matcher #" << matches[mi].second; sep = ",\n"; } } } return true; } bool MatchMatrix::NextGraph() { for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { char& b = matched_[SpaceIndex(ilhs, irhs)]; if (!b) { b = 1; return true; } b = 0; } } return false; } void MatchMatrix::Randomize() { for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { char& b = matched_[SpaceIndex(ilhs, irhs)]; b = static_cast(rand() & 1); // NOLINT } } } string MatchMatrix::DebugString() const { ::std::stringstream ss; const char *sep = ""; for (size_t i = 0; i < LhsSize(); ++i) { ss << sep; for (size_t j = 0; j < RhsSize(); ++j) { ss << HasEdge(i, j); } sep = ";"; } return ss.str(); } void UnorderedElementsAreMatcherImplBase::DescribeToImpl( ::std::ostream* os) const { if (matcher_describers_.empty()) { *os << "is empty"; return; } if (matcher_describers_.size() == 1) { *os << "has " << Elements(1) << " and that element "; matcher_describers_[0]->DescribeTo(os); return; } *os << "has " << Elements(matcher_describers_.size()) << " and there exists some permutation of elements such that:\n"; const char* sep = ""; for (size_t i = 0; i != matcher_describers_.size(); ++i) { *os << sep << " - element #" << i << " "; matcher_describers_[i]->DescribeTo(os); sep = ", and\n"; } } void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl( ::std::ostream* os) const { if (matcher_describers_.empty()) { *os << "isn't empty"; return; } if (matcher_describers_.size() == 1) { *os << "doesn't have " << Elements(1) << ", or has " << Elements(1) << " that "; matcher_describers_[0]->DescribeNegationTo(os); return; } *os << "doesn't have " << Elements(matcher_describers_.size()) << ", or there exists no permutation of elements such that:\n"; const char* sep = ""; for (size_t i = 0; i != matcher_describers_.size(); ++i) { *os << sep << " - element #" << i << " "; matcher_describers_[i]->DescribeTo(os); sep = ", and\n"; } } // Checks that all matchers match at least one element, and that all // elements match at least one matcher. This enables faster matching // and better error reporting. // Returns false, writing an explanation to 'listener', if and only // if the success criteria are not met. bool UnorderedElementsAreMatcherImplBase:: VerifyAllElementsAndMatchersAreMatched( const ::std::vector& element_printouts, const MatchMatrix& matrix, MatchResultListener* listener) const { bool result = true; ::std::vector element_matched(matrix.LhsSize(), 0); ::std::vector matcher_matched(matrix.RhsSize(), 0); for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) { for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) { char matched = matrix.HasEdge(ilhs, irhs); element_matched[ilhs] |= matched; matcher_matched[irhs] |= matched; } } { const char* sep = "where the following matchers don't match any elements:\n"; for (size_t mi = 0; mi < matcher_matched.size(); ++mi) { if (matcher_matched[mi]) continue; result = false; if (listener->IsInterested()) { *listener << sep << "matcher #" << mi << ": "; matcher_describers_[mi]->DescribeTo(listener->stream()); sep = ",\n"; } } } { const char* sep = "where the following elements don't match any matchers:\n"; const char* outer_sep = ""; if (!result) { outer_sep = "\nand "; } for (size_t ei = 0; ei < element_matched.size(); ++ei) { if (element_matched[ei]) continue; result = false; if (listener->IsInterested()) { *listener << outer_sep << sep << "element #" << ei << ": " << element_printouts[ei]; sep = ",\n"; outer_sep = ""; } } } return result; } } // namespace internal } // namespace testing