Makes gmock work on Symbian (both 3rd & 5th editions), original patch contributed by Mika Raento.

This commit is contained in:
zhanyong.wan 2009-09-25 18:55:50 +00:00
parent 2d970ee3ba
commit 95b12332c3
9 changed files with 185 additions and 92 deletions

View File

@ -125,32 +125,13 @@ GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0'); GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
// signed wchar_t and unsigned wchar_t are NOT in the C++ standard.
// Using them is a bad practice and not portable. So don't use them.
//
// Still, Google Mock is designed to work even if the user uses signed
// wchar_t or unsigned wchar_t (obviously, assuming the compiler
// supports them).
//
// To gcc,
//
// wchar_t == signed wchar_t != unsigned wchar_t == unsigned int
//
// MSVC does not recognize signed wchar_t or unsigned wchar_t. It
// treats wchar_t as a native type usually, but treats it as the same
// as unsigned short when the compiler option /Zc:wchar_t- is
// specified.
//
// Therefore we provide a default action for wchar_t when compiled
// with gcc or _NATIVE_WCHAR_T_DEFINED is defined.
//
// There's no need for a default action for signed wchar_t, as that // There's no need for a default action for signed wchar_t, as that
// type is the same as wchar_t for gcc, and invalid for MSVC. // type is the same as wchar_t for gcc, and invalid for MSVC.
// //
// There's also no need for a default action for unsigned wchar_t, as // There's also no need for a default action for unsigned wchar_t, as
// that type is the same as unsigned int for gcc, and invalid for // that type is the same as unsigned int for gcc, and invalid for
// MSVC. // MSVC.
#if defined(__GNUC__) || defined(_NATIVE_WCHAR_T_DEFINED) #if GMOCK_WCHAR_T_IS_NATIVE_
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
#endif #endif

View File

@ -304,11 +304,15 @@ class ElementsAreMatcher1 {
typedef typename internal::StlContainerView<RawContainer>::type::value_type typedef typename internal::StlContainerView<RawContainer>::type::value_type
Element; Element;
const Matcher<const Element&> matchers[] = { // Nokia's Symbian Compiler has a nasty bug where the object put
MatcherCast<const Element&>(e1_), // in a one-element local array is not destructed when the array
}; // goes out of scope. This leads to obvious badness as we've
// added the linked_ptr in it to our other linked_ptrs list.
return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 1)); // Hence we implement ElementsAreMatcher1 specially to avoid using
// a local array.
const Matcher<const Element&> matcher =
MatcherCast<const Element&>(e1_);
return MakeMatcher(new ElementsAreMatcherImpl<Container>(&matcher, 1));
} }
private: private:

View File

@ -192,6 +192,19 @@ class ElementsAreMatcher$i {
typedef typename internal::StlContainerView<RawContainer>::type::value_type typedef typename internal::StlContainerView<RawContainer>::type::value_type
Element; Element;
$if i==1 [[
// Nokia's Symbian Compiler has a nasty bug where the object put
// in a one-element local array is not destructed when the array
// goes out of scope. This leads to obvious badness as we've
// added the linked_ptr in it to our other linked_ptrs list.
// Hence we implement ElementsAreMatcher1 specially to avoid using
// a local array.
const Matcher<const Element&> matcher =
MatcherCast<const Element&>(e1_);
return MakeMatcher(new ElementsAreMatcherImpl<Container>(&matcher, 1));
]] $else [[
const Matcher<const Element&> matchers[] = { const Matcher<const Element&> matchers[] = {
$for j [[ $for j [[
@ -201,6 +214,8 @@ $for j [[
}; };
return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, $i)); return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, $i));
]]
} }
private: private:

View File

@ -320,47 +320,59 @@ inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
template <typename T, typename M> template <typename T, typename M>
Matcher<T> MatcherCast(M m); Matcher<T> MatcherCast(M m);
// TODO(vladl@google.com): Modify the implementation to reject casting
// Matcher<int> to Matcher<double>.
// Implements SafeMatcherCast(). // Implements SafeMatcherCast().
// //
// This overload handles polymorphic matchers only since monomorphic // We use an intermediate class to do the actual safe casting as Nokia's
// matchers are handled by the next one. // Symbian compiler cannot decide between
template <typename T, typename M> // template <T, M> ... (M) and
inline Matcher<T> SafeMatcherCast(M polymorphic_matcher) { // template <T, U> ... (const Matcher<U>&)
return Matcher<T>(polymorphic_matcher); // for function templates but can for member function templates.
} template <typename T>
class SafeMatcherCastImpl {
public:
// This overload handles polymorphic matchers only since monomorphic
// matchers are handled by the next one.
template <typename M>
static inline Matcher<T> Cast(M polymorphic_matcher) {
return Matcher<T>(polymorphic_matcher);
}
// This overload handles monomorphic matchers. // This overload handles monomorphic matchers.
// //
// In general, if type T can be implicitly converted to type U, we can // In general, if type T can be implicitly converted to type U, we can
// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
// contravariant): just keep a copy of the original Matcher<U>, convert the // contravariant): just keep a copy of the original Matcher<U>, convert the
// argument from type T to U, and then pass it to the underlying Matcher<U>. // argument from type T to U, and then pass it to the underlying Matcher<U>.
// The only exception is when U is a reference and T is not, as the // The only exception is when U is a reference and T is not, as the
// underlying Matcher<U> may be interested in the argument's address, which // underlying Matcher<U> may be interested in the argument's address, which
// is not preserved in the conversion from T to U. // is not preserved in the conversion from T to U.
template <typename T, typename U> template <typename U>
Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) { static inline Matcher<T> Cast(const Matcher<U>& matcher) {
// Enforce that T can be implicitly converted to U. // Enforce that T can be implicitly converted to U.
GMOCK_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value), GMOCK_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
T_must_be_implicitly_convertible_to_U); T_must_be_implicitly_convertible_to_U);
// Enforce that we are not converting a non-reference type T to a reference // Enforce that we are not converting a non-reference type T to a reference
// type U. // type U.
GMOCK_COMPILE_ASSERT_( GMOCK_COMPILE_ASSERT_(
internal::is_reference<T>::value || !internal::is_reference<U>::value, internal::is_reference<T>::value || !internal::is_reference<U>::value,
cannot_convert_non_referentce_arg_to_reference); cannot_convert_non_referentce_arg_to_reference);
// In case both T and U are arithmetic types, enforce that the // In case both T and U are arithmetic types, enforce that the
// conversion is not lossy. // conversion is not lossy.
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(T)) RawT; typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(T)) RawT;
typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(U)) RawU; typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(U)) RawU;
const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
GMOCK_COMPILE_ASSERT_( GMOCK_COMPILE_ASSERT_(
kTIsOther || kUIsOther || kTIsOther || kUIsOther ||
(internal::LosslessArithmeticConvertible<RawT, RawU>::value), (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
conversion_of_arithmetic_types_must_be_lossless); conversion_of_arithmetic_types_must_be_lossless);
return MatcherCast<T>(matcher); return MatcherCast<T>(matcher);
}
};
template <typename T, typename M>
inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) {
return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher);
} }
// A<T>() returns a matcher that matches any value of type T. // A<T>() returns a matcher that matches any value of type T.

View File

@ -221,6 +221,34 @@ class ImplicitlyConvertible {
template <typename From, typename To> template <typename From, typename To>
const bool ImplicitlyConvertible<From, To>::value; const bool ImplicitlyConvertible<From, To>::value;
// Symbian compilation can be done with wchar_t being either a native
// type or a typedef. Using Google Mock with OpenC without wchar_t
// should require the definition of _STLP_NO_WCHAR_T.
//
// MSVC treats wchar_t as a native type usually, but treats it as the
// same as unsigned short when the compiler option /Zc:wchar_t- is
// specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t
// is a native type.
#if (GTEST_OS_SYMBIAN && defined(_STLP_NO_WCHAR_T)) || \
(defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED))
// wchar_t is a typedef.
#else
#define GMOCK_WCHAR_T_IS_NATIVE_ 1
#endif
// signed wchar_t and unsigned wchar_t are NOT in the C++ standard.
// Using them is a bad practice and not portable. So DON'T use them.
//
// Still, Google Mock is designed to work even if the user uses signed
// wchar_t or unsigned wchar_t (obviously, assuming the compiler
// supports them).
//
// To gcc,
// wchar_t == signed wchar_t != unsigned wchar_t == unsigned int
#ifdef __GNUC__
#define GMOCK_HAS_SIGNED_WCHAR_T_ 1 // signed/unsigned wchar_t are valid types.
#endif
// In what follows, we use the term "kind" to indicate whether a type // In what follows, we use the term "kind" to indicate whether a type
// is bool, an integer type (excluding bool), a floating-point type, // is bool, an integer type (excluding bool), a floating-point type,
// or none of them. This categorization is useful for determining // or none of them. This categorization is useful for determining
@ -252,10 +280,7 @@ GMOCK_DECLARE_KIND_(unsigned int, kInteger);
GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT
GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT
// MSVC can be configured to define wchar_t as a typedef of unsigned #if GMOCK_WCHAR_T_IS_NATIVE_
// short. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t is a
// native type.
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
GMOCK_DECLARE_KIND_(wchar_t, kInteger); GMOCK_DECLARE_KIND_(wchar_t, kInteger);
#endif #endif
@ -679,10 +704,31 @@ class StlContainerView<Element[N]> {
static const_reference ConstReference(const Element (&array)[N]) { static const_reference ConstReference(const Element (&array)[N]) {
// Ensures that Element is not a const type. // Ensures that Element is not a const type.
testing::StaticAssertTypeEq<Element, RawElement>(); testing::StaticAssertTypeEq<Element, RawElement>();
#if GTEST_OS_SYMBIAN
// The Nokia Symbian compiler confuses itself in template instantiation
// for this call without the cast to Element*:
// function call '[testing::internal::NativeArray<char *>].NativeArray(
// {lval} const char *[4], long, testing::internal::RelationToSource)'
// does not match
// 'testing::internal::NativeArray<char *>::NativeArray(
// char *const *, unsigned int, testing::internal::RelationToSource)'
// (instantiating: 'testing::internal::ContainsMatcherImpl
// <const char * (&)[4]>::Matches(const char * (&)[4]) const')
// (instantiating: 'testing::internal::StlContainerView<char *[4]>::
// ConstReference(const char * (&)[4])')
// (and though the N parameter type is mismatched in the above explicit
// conversion of it doesn't help - only the conversion of the array).
return type(const_cast<Element*>(&array[0]), N, kReference);
#else
return type(array, N, kReference); return type(array, N, kReference);
#endif // GTEST_OS_SYMBIAN
} }
static type Copy(const Element (&array)[N]) { static type Copy(const Element (&array)[N]) {
#if GTEST_OS_SYMBIAN
return type(const_cast<Element*>(&array[0]), N, kCopy);
#else
return type(array, N, kCopy); return type(array, N, kCopy);
#endif // GTEST_OS_SYMBIAN
} }
}; };

View File

@ -98,11 +98,13 @@ TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) {
EXPECT_EQ(0, BuiltInDefaultValue<unsigned char>::Get()); EXPECT_EQ(0, BuiltInDefaultValue<unsigned char>::Get());
EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get()); EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get());
EXPECT_EQ(0, BuiltInDefaultValue<char>::Get()); EXPECT_EQ(0, BuiltInDefaultValue<char>::Get());
#if !GTEST_OS_WINDOWS #if GMOCK_HAS_SIGNED_WCHAR_T_
EXPECT_EQ(0, BuiltInDefaultValue<unsigned wchar_t>::Get()); EXPECT_EQ(0, BuiltInDefaultValue<unsigned wchar_t>::Get());
EXPECT_EQ(0, BuiltInDefaultValue<signed wchar_t>::Get()); EXPECT_EQ(0, BuiltInDefaultValue<signed wchar_t>::Get());
#endif // !GTEST_OS_WINDOWS #endif
#if GMOCK_WCHAR_T_IS_NATIVE_
EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get()); EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get());
#endif
EXPECT_EQ(0, BuiltInDefaultValue<unsigned short>::Get()); // NOLINT EXPECT_EQ(0, BuiltInDefaultValue<unsigned short>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT
EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT
@ -124,11 +126,13 @@ TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) {
EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists()); EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists()); EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<char>::Exists()); EXPECT_TRUE(BuiltInDefaultValue<char>::Exists());
#if !GTEST_OS_WINDOWS #if GMOCK_HAS_SIGNED_WCHAR_T_
EXPECT_TRUE(BuiltInDefaultValue<unsigned wchar_t>::Exists()); EXPECT_TRUE(BuiltInDefaultValue<unsigned wchar_t>::Exists());
EXPECT_TRUE(BuiltInDefaultValue<signed wchar_t>::Exists()); EXPECT_TRUE(BuiltInDefaultValue<signed wchar_t>::Exists());
#endif // !GTEST_OS_WINDOWS #endif
#if GMOCK_WCHAR_T_IS_NATIVE_
EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists()); EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists());
#endif
EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists()); // NOLINT EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT
EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT
@ -395,12 +399,19 @@ class IsNotZero : public ActionInterface<bool(int)> { // NOLINT
} }
}; };
#if !GTEST_OS_SYMBIAN
// Compiling this test on Nokia's Symbian compiler fails with:
// 'Result' is not a member of class 'testing::internal::Function<int>'
// (point of instantiation: '@unnamed@gmock_actions_test_cc@::
// ActionTest_CanBeConvertedToOtherActionType_Test::TestBody()')
// with no obvious fix.
TEST(ActionTest, CanBeConvertedToOtherActionType) { TEST(ActionTest, CanBeConvertedToOtherActionType) {
const Action<bool(int)> a1(new IsNotZero); // NOLINT const Action<bool(int)> a1(new IsNotZero); // NOLINT
const Action<int(char)> a2 = Action<int(char)>(a1); // NOLINT const Action<int(char)> a2 = Action<int(char)>(a1); // NOLINT
EXPECT_EQ(1, a2.Perform(make_tuple('a'))); EXPECT_EQ(1, a2.Perform(make_tuple('a')));
EXPECT_EQ(0, a2.Perform(make_tuple('\0'))); EXPECT_EQ(0, a2.Perform(make_tuple('\0')));
} }
#endif // !GTEST_OS_SYMBIAN
// The following two classes are for testing MakePolymorphicAction(). // The following two classes are for testing MakePolymorphicAction().

View File

@ -211,7 +211,8 @@ TEST(GetRawPointerTest, WorksForSmartPointers) {
TEST(GetRawPointerTest, WorksForRawPointers) { TEST(GetRawPointerTest, WorksForRawPointers) {
int* p = NULL; int* p = NULL;
EXPECT_EQ(NULL, GetRawPointer(p)); // Don't use EXPECT_EQ as no NULL-testing magic on Symbian.
EXPECT_TRUE(NULL == GetRawPointer(p));
int n = 1; int n = 1;
EXPECT_EQ(&n, GetRawPointer(&n)); EXPECT_EQ(&n, GetRawPointer(&n));
} }

View File

@ -699,10 +699,20 @@ TEST(IsNullTest, MatchesNullPointer) {
EXPECT_TRUE(m2.Matches(p2)); EXPECT_TRUE(m2.Matches(p2));
EXPECT_FALSE(m2.Matches("hi")); EXPECT_FALSE(m2.Matches("hi"));
#if !GTEST_OS_SYMBIAN
// Nokia's Symbian compiler generates:
// gmock-matchers.h: ambiguous access to overloaded function
// gmock-matchers.h: 'testing::Matcher<void *>::Matcher(void *)'
// gmock-matchers.h: 'testing::Matcher<void *>::Matcher(const testing::
// MatcherInterface<void *> *)'
// gmock-matchers.h: (point of instantiation: 'testing::
// gmock_matchers_test::IsNullTest_MatchesNullPointer_Test::TestBody()')
// gmock-matchers.h: (instantiating: 'testing::PolymorphicMatc
Matcher<void*> m3 = IsNull(); Matcher<void*> m3 = IsNull();
void* p3 = NULL; void* p3 = NULL;
EXPECT_TRUE(m3.Matches(p3)); EXPECT_TRUE(m3.Matches(p3));
EXPECT_FALSE(m3.Matches(reinterpret_cast<void*>(0xbeef))); EXPECT_FALSE(m3.Matches(reinterpret_cast<void*>(0xbeef)));
#endif
} }
// Tests that IsNull() describes itself properly. // Tests that IsNull() describes itself properly.
@ -933,24 +943,24 @@ TEST(KeyTest, SafelyCastsInnerMatcher) {
} }
TEST(KeyTest, InsideContainsUsingMap) { TEST(KeyTest, InsideContainsUsingMap) {
std::map<int, std::string> container; std::map<int, char> container;
container.insert(std::make_pair(1, "foo")); container.insert(std::make_pair(1, 'a'));
container.insert(std::make_pair(2, "bar")); container.insert(std::make_pair(2, 'b'));
container.insert(std::make_pair(4, "baz")); container.insert(std::make_pair(4, 'c'));
EXPECT_THAT(container, Contains(Key(1))); EXPECT_THAT(container, Contains(Key(1)));
EXPECT_THAT(container, Not(Contains(Key(3)))); EXPECT_THAT(container, Not(Contains(Key(3))));
} }
TEST(KeyTest, InsideContainsUsingMultimap) { TEST(KeyTest, InsideContainsUsingMultimap) {
std::multimap<int, std::string> container; std::multimap<int, char> container;
container.insert(std::make_pair(1, "foo")); container.insert(std::make_pair(1, 'a'));
container.insert(std::make_pair(2, "bar")); container.insert(std::make_pair(2, 'b'));
container.insert(std::make_pair(4, "baz")); container.insert(std::make_pair(4, 'c'));
EXPECT_THAT(container, Not(Contains(Key(25)))); EXPECT_THAT(container, Not(Contains(Key(25))));
container.insert(std::make_pair(25, "more foo")); container.insert(std::make_pair(25, 'd'));
EXPECT_THAT(container, Contains(Key(25))); EXPECT_THAT(container, Contains(Key(25)));
container.insert(std::make_pair(25, "more bar")); container.insert(std::make_pair(25, 'e'));
EXPECT_THAT(container, Contains(Key(25))); EXPECT_THAT(container, Contains(Key(25)));
EXPECT_THAT(container, Contains(Key(1))); EXPECT_THAT(container, Contains(Key(1)));
@ -1031,13 +1041,13 @@ TEST(PairTest, SafelyCastsInnerMatchers) {
} }
TEST(PairTest, InsideContainsUsingMap) { TEST(PairTest, InsideContainsUsingMap) {
std::map<int, std::string> container; std::map<int, char> container;
container.insert(std::make_pair(1, "foo")); container.insert(std::make_pair(1, 'a'));
container.insert(std::make_pair(2, "bar")); container.insert(std::make_pair(2, 'b'));
container.insert(std::make_pair(4, "baz")); container.insert(std::make_pair(4, 'c'));
EXPECT_THAT(container, Contains(Pair(1, "foo"))); EXPECT_THAT(container, Contains(Pair(1, 'a')));
EXPECT_THAT(container, Contains(Pair(1, _))); EXPECT_THAT(container, Contains(Pair(1, _)));
EXPECT_THAT(container, Contains(Pair(_, "foo"))); EXPECT_THAT(container, Contains(Pair(_, 'a')));
EXPECT_THAT(container, Not(Contains(Pair(3, _)))); EXPECT_THAT(container, Not(Contains(Pair(3, _))));
} }
@ -1961,8 +1971,20 @@ TEST(MatcherAssertionTest, WorksForByRefArguments) {
"Actual: 0 (is located @"); "Actual: 0 (is located @");
} }
#if !GTEST_OS_SYMBIAN
// Tests that ASSERT_THAT() and EXPECT_THAT() work when the matcher is // Tests that ASSERT_THAT() and EXPECT_THAT() work when the matcher is
// monomorphic. // monomorphic.
// ASSERT_THAT("hello", starts_with_he) fails to compile with Nokia's
// Symbian compiler: it tries to compile
// template<T, U> class MatcherCastImpl { ...
// virtual bool Matches(T x) const {
// return source_matcher_.Matches(static_cast<U>(x));
// with U == string and T == const char*
// With ASSERT_THAT("hello"...) changed to ASSERT_THAT(string("hello") ... )
// the compiler silently crashes with no output.
// If MatcherCastImpl is changed to use U(x) instead of static_cast<U>(x)
// the code compiles but the converted string is bogus.
TEST(MatcherAssertionTest, WorksForMonomorphicMatcher) { TEST(MatcherAssertionTest, WorksForMonomorphicMatcher) {
Matcher<const char*> starts_with_he = StartsWith("he"); Matcher<const char*> starts_with_he = StartsWith("he");
ASSERT_THAT("hello", starts_with_he); ASSERT_THAT("hello", starts_with_he);
@ -1976,6 +1998,7 @@ TEST(MatcherAssertionTest, WorksForMonomorphicMatcher) {
"Expected: is greater than 5\n" "Expected: is greater than 5\n"
" Actual: 5"); " Actual: 5");
} }
#endif // !GTEST_OS_SYMBIAN
// Tests floating-point matchers. // Tests floating-point matchers.
template <typename RawType> template <typename RawType>

View File

@ -840,16 +840,16 @@ TEST(PrintTupleTest, VariousSizes) {
const char* const str = "8"; const char* const str = "8";
tuple<bool, char, short, testing::internal::Int32, // NOLINT tuple<bool, char, short, testing::internal::Int32, // NOLINT
testing::internal::Int64, float, double, const char*, void*, string> testing::internal::Int64, float, double, const char*, void*, string>
t10(false, 'a', 3, 4, 5, 6.5F, 7.5, str, NULL, "10"); t10(false, 'a', 3, 4, 5, 1.5F, -2.5, str, NULL, "10");
EXPECT_EQ("(false, 'a' (97), 3, 4, 5, 6.5, 7.5, " + PrintPointer(str) + EXPECT_EQ("(false, 'a' (97), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
" pointing to \"8\", NULL, \"10\")", " pointing to \"8\", NULL, \"10\")",
Print(t10)); Print(t10));
} }
// Nested tuples. // Nested tuples.
TEST(PrintTupleTest, NestedTuple) { TEST(PrintTupleTest, NestedTuple) {
tuple<tuple<int, double>, char> nested(make_tuple(5, 9.5), 'a'); tuple<tuple<int, bool>, char> nested(make_tuple(5, true), 'a');
EXPECT_EQ("((5, 9.5), 'a' (97))", Print(nested)); EXPECT_EQ("((5, true), 'a' (97))", Print(nested));
} }
// Tests printing user-defined unprintable types. // Tests printing user-defined unprintable types.