2008-07-03 22:38:12 +00:00
|
|
|
// Copyright 2005, Google Inc.
|
|
|
|
// All rights reserved.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
|
|
// in the documentation and/or other materials provided with the
|
|
|
|
// distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived from
|
|
|
|
// this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
//
|
|
|
|
// Author: wan@google.com (Zhanyong Wan)
|
|
|
|
//
|
|
|
|
// Tests for Google Test itself. This verifies that the basic constructs of
|
|
|
|
// Google Test work.
|
|
|
|
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <gtest/gtest-spi.h>
|
|
|
|
|
|
|
|
// Indicates that this translation unit is part of Google Test's
|
|
|
|
// implementation. It must come before gtest-internal-inl.h is
|
|
|
|
// included, or there will be a compiler error. This trick is to
|
|
|
|
// prevent a user from accidentally including gtest-internal-inl.h in
|
|
|
|
// his code.
|
|
|
|
#define GTEST_IMPLEMENTATION
|
|
|
|
#include "src/gtest-internal-inl.h"
|
|
|
|
#undef GTEST_IMPLEMENTATION
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
#ifdef GTEST_OS_LINUX
|
|
|
|
#include <string.h>
|
|
|
|
#include <signal.h>
|
|
|
|
#include <sys/stat.h>
|
|
|
|
#include <pthread.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
#endif // GTEST_OS_LINUX
|
|
|
|
|
|
|
|
namespace testing {
|
|
|
|
namespace internal {
|
|
|
|
bool ParseInt32Flag(const char* str, const char* flag, Int32* value);
|
|
|
|
} // namespace internal
|
|
|
|
} // namespace testing
|
|
|
|
|
|
|
|
using testing::internal::ParseInt32Flag;
|
|
|
|
|
|
|
|
namespace testing {
|
|
|
|
|
|
|
|
GTEST_DECLARE_string(output);
|
|
|
|
GTEST_DECLARE_string(color);
|
|
|
|
|
|
|
|
namespace internal {
|
|
|
|
bool ShouldUseColor(bool stdout_is_tty);
|
|
|
|
} // namespace internal
|
|
|
|
} // namespace testing
|
|
|
|
|
2008-08-06 21:43:15 +00:00
|
|
|
using testing::AssertionFailure;
|
|
|
|
using testing::AssertionResult;
|
|
|
|
using testing::AssertionSuccess;
|
|
|
|
using testing::DoubleLE;
|
|
|
|
using testing::FloatLE;
|
|
|
|
using testing::GTEST_FLAG(break_on_failure);
|
|
|
|
using testing::GTEST_FLAG(catch_exceptions);
|
2008-07-03 22:38:12 +00:00
|
|
|
using testing::GTEST_FLAG(color);
|
2008-08-06 21:43:15 +00:00
|
|
|
using testing::GTEST_FLAG(filter);
|
|
|
|
using testing::GTEST_FLAG(list_tests);
|
|
|
|
using testing::GTEST_FLAG(output);
|
|
|
|
using testing::GTEST_FLAG(print_time);
|
|
|
|
using testing::GTEST_FLAG(repeat);
|
|
|
|
using testing::GTEST_FLAG(show_internal_stack_frames);
|
|
|
|
using testing::GTEST_FLAG(stack_trace_depth);
|
|
|
|
using testing::IsNotSubstring;
|
|
|
|
using testing::IsSubstring;
|
|
|
|
using testing::Message;
|
2008-07-03 22:38:12 +00:00
|
|
|
using testing::ScopedFakeTestPartResultReporter;
|
2008-08-06 21:43:15 +00:00
|
|
|
using testing::Test;
|
2008-07-03 22:38:12 +00:00
|
|
|
using testing::TestPartResult;
|
|
|
|
using testing::TestPartResultArray;
|
2008-08-06 21:43:15 +00:00
|
|
|
using testing::TPRT_FATAL_FAILURE;
|
|
|
|
using testing::TPRT_NONFATAL_FAILURE;
|
|
|
|
using testing::TPRT_SUCCESS;
|
2008-07-03 22:38:12 +00:00
|
|
|
using testing::UnitTest;
|
|
|
|
using testing::internal::AppendUserMessage;
|
|
|
|
using testing::internal::EqFailure;
|
2008-08-06 21:43:15 +00:00
|
|
|
using testing::internal::FloatingPoint;
|
|
|
|
using testing::internal::GTestFlagSaver;
|
2008-07-03 22:38:12 +00:00
|
|
|
using testing::internal::Int32;
|
|
|
|
using testing::internal::List;
|
|
|
|
using testing::internal::ShouldUseColor;
|
|
|
|
using testing::internal::StreamableToString;
|
|
|
|
using testing::internal::String;
|
|
|
|
using testing::internal::TestProperty;
|
|
|
|
using testing::internal::TestResult;
|
|
|
|
using testing::internal::ToUtf8String;
|
|
|
|
using testing::internal::UnitTestImpl;
|
|
|
|
|
|
|
|
// This line tests that we can define tests in an unnamed namespace.
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
#ifndef __SYMBIAN32__
|
|
|
|
// NULL testing does not work with Symbian compilers.
|
|
|
|
|
|
|
|
// Tests that GTEST_IS_NULL_LITERAL(x) is true when x is a null
|
|
|
|
// pointer literal.
|
|
|
|
TEST(NullLiteralTest, IsTrueForNullLiterals) {
|
|
|
|
EXPECT_TRUE(GTEST_IS_NULL_LITERAL(NULL));
|
|
|
|
EXPECT_TRUE(GTEST_IS_NULL_LITERAL(0));
|
|
|
|
EXPECT_TRUE(GTEST_IS_NULL_LITERAL(1 - 1));
|
|
|
|
EXPECT_TRUE(GTEST_IS_NULL_LITERAL(0U));
|
|
|
|
EXPECT_TRUE(GTEST_IS_NULL_LITERAL(0L));
|
|
|
|
EXPECT_TRUE(GTEST_IS_NULL_LITERAL(false));
|
|
|
|
EXPECT_TRUE(GTEST_IS_NULL_LITERAL(true && false));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that GTEST_IS_NULL_LITERAL(x) is false when x is not a null
|
|
|
|
// pointer literal.
|
|
|
|
TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
|
|
|
|
EXPECT_FALSE(GTEST_IS_NULL_LITERAL(1));
|
|
|
|
EXPECT_FALSE(GTEST_IS_NULL_LITERAL(0.0));
|
|
|
|
EXPECT_FALSE(GTEST_IS_NULL_LITERAL('a'));
|
|
|
|
EXPECT_FALSE(GTEST_IS_NULL_LITERAL(static_cast<void*>(NULL)));
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // __SYMBIAN32__
|
|
|
|
// Tests ToUtf8String().
|
|
|
|
|
|
|
|
// Tests that the NUL character L'\0' is encoded correctly.
|
|
|
|
TEST(ToUtf8StringTest, CanEncodeNul) {
|
|
|
|
EXPECT_STREQ("", ToUtf8String(L'\0').c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that ASCII characters are encoded correctly.
|
|
|
|
TEST(ToUtf8StringTest, CanEncodeAscii) {
|
|
|
|
EXPECT_STREQ("a", ToUtf8String(L'a').c_str());
|
|
|
|
EXPECT_STREQ("Z", ToUtf8String(L'Z').c_str());
|
|
|
|
EXPECT_STREQ("&", ToUtf8String(L'&').c_str());
|
|
|
|
EXPECT_STREQ("\x7F", ToUtf8String(L'\x7F').c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that Unicode code-points that have 8 to 11 bits are encoded
|
|
|
|
// as 110xxxxx 10xxxxxx.
|
|
|
|
TEST(ToUtf8StringTest, CanEncode8To11Bits) {
|
|
|
|
// 000 1101 0011 => 110-00011 10-010011
|
|
|
|
EXPECT_STREQ("\xC3\x93", ToUtf8String(L'\xD3').c_str());
|
|
|
|
|
|
|
|
// 101 0111 0110 => 110-10101 10-110110
|
|
|
|
EXPECT_STREQ("\xD5\xB6", ToUtf8String(L'\x576').c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that Unicode code-points that have 12 to 16 bits are encoded
|
|
|
|
// as 1110xxxx 10xxxxxx 10xxxxxx.
|
|
|
|
TEST(ToUtf8StringTest, CanEncode12To16Bits) {
|
|
|
|
// 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
|
|
|
|
EXPECT_STREQ("\xE0\xA3\x93", ToUtf8String(L'\x8D3').c_str());
|
|
|
|
|
|
|
|
// 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
|
|
|
|
EXPECT_STREQ("\xEC\x9D\x8D", ToUtf8String(L'\xC74D').c_str());
|
|
|
|
}
|
|
|
|
|
2008-07-09 20:58:26 +00:00
|
|
|
#if !defined(GTEST_OS_WINDOWS) && !defined(GTEST_OS_CYGWIN) && \
|
|
|
|
!defined(__SYMBIAN32__)
|
2008-07-03 22:38:12 +00:00
|
|
|
|
|
|
|
// Tests in this group require a wchar_t to hold > 16 bits, and thus
|
2008-07-09 20:58:26 +00:00
|
|
|
// are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
|
|
|
|
// 16-bit wide.
|
2008-07-03 22:38:12 +00:00
|
|
|
|
|
|
|
// Tests that Unicode code-points that have 17 to 21 bits are encoded
|
|
|
|
// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
|
|
|
|
TEST(ToUtf8StringTest, CanEncode17To21Bits) {
|
|
|
|
// 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
|
|
|
|
EXPECT_STREQ("\xF0\x90\xA3\x93", ToUtf8String(L'\x108D3').c_str());
|
|
|
|
|
|
|
|
// 1 0111 1000 0110 0011 0100 => 11110-101 10-111000 10-011000 10-110100
|
|
|
|
EXPECT_STREQ("\xF5\xB8\x98\xB4", ToUtf8String(L'\x178634').c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that encoding an invalid code-point generates the expected result.
|
|
|
|
TEST(ToUtf8StringTest, CanEncodeInvalidCodePoint) {
|
|
|
|
EXPECT_STREQ("(Invalid Unicode 0x1234ABCD)",
|
|
|
|
ToUtf8String(L'\x1234ABCD').c_str());
|
|
|
|
}
|
|
|
|
|
2008-07-09 20:58:26 +00:00
|
|
|
#endif // Windows, Cygwin, or Symbian
|
2008-07-03 22:38:12 +00:00
|
|
|
|
|
|
|
// Tests the List template class.
|
|
|
|
|
|
|
|
// Tests List::PushFront().
|
|
|
|
TEST(ListTest, PushFront) {
|
|
|
|
List<int> a;
|
|
|
|
ASSERT_EQ(0u, a.size());
|
|
|
|
|
|
|
|
// Calls PushFront() on an empty list.
|
|
|
|
a.PushFront(1);
|
|
|
|
ASSERT_EQ(1u, a.size());
|
|
|
|
EXPECT_EQ(1, a.Head()->element());
|
|
|
|
ASSERT_EQ(a.Head(), a.Last());
|
|
|
|
|
|
|
|
// Calls PushFront() on a singleton list.
|
|
|
|
a.PushFront(2);
|
|
|
|
ASSERT_EQ(2u, a.size());
|
|
|
|
EXPECT_EQ(2, a.Head()->element());
|
|
|
|
EXPECT_EQ(1, a.Last()->element());
|
|
|
|
|
|
|
|
// Calls PushFront() on a list with more than one elements.
|
|
|
|
a.PushFront(3);
|
|
|
|
ASSERT_EQ(3u, a.size());
|
|
|
|
EXPECT_EQ(3, a.Head()->element());
|
|
|
|
EXPECT_EQ(2, a.Head()->next()->element());
|
|
|
|
EXPECT_EQ(1, a.Last()->element());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests List::PopFront().
|
|
|
|
TEST(ListTest, PopFront) {
|
|
|
|
List<int> a;
|
|
|
|
|
|
|
|
// Popping on an empty list should fail.
|
|
|
|
EXPECT_FALSE(a.PopFront(NULL));
|
|
|
|
|
|
|
|
// Popping again on an empty list should fail, and the result element
|
|
|
|
// shouldn't be overwritten.
|
|
|
|
int element = 1;
|
|
|
|
EXPECT_FALSE(a.PopFront(&element));
|
|
|
|
EXPECT_EQ(1, element);
|
|
|
|
|
|
|
|
a.PushFront(2);
|
|
|
|
a.PushFront(3);
|
|
|
|
|
|
|
|
// PopFront() should pop the element in the front of the list.
|
|
|
|
EXPECT_TRUE(a.PopFront(&element));
|
|
|
|
EXPECT_EQ(3, element);
|
|
|
|
|
|
|
|
// After popping the last element, the list should be empty.
|
|
|
|
EXPECT_TRUE(a.PopFront(NULL));
|
|
|
|
EXPECT_EQ(0u, a.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests inserting at the beginning using List::InsertAfter().
|
|
|
|
TEST(ListTest, InsertAfterAtBeginning) {
|
|
|
|
List<int> a;
|
|
|
|
ASSERT_EQ(0u, a.size());
|
|
|
|
|
|
|
|
// Inserts into an empty list.
|
|
|
|
a.InsertAfter(NULL, 1);
|
|
|
|
ASSERT_EQ(1u, a.size());
|
|
|
|
EXPECT_EQ(1, a.Head()->element());
|
|
|
|
ASSERT_EQ(a.Head(), a.Last());
|
|
|
|
|
|
|
|
// Inserts at the beginning of a singleton list.
|
|
|
|
a.InsertAfter(NULL, 2);
|
|
|
|
ASSERT_EQ(2u, a.size());
|
|
|
|
EXPECT_EQ(2, a.Head()->element());
|
|
|
|
EXPECT_EQ(1, a.Last()->element());
|
|
|
|
|
|
|
|
// Inserts at the beginning of a list with more than one elements.
|
|
|
|
a.InsertAfter(NULL, 3);
|
|
|
|
ASSERT_EQ(3u, a.size());
|
|
|
|
EXPECT_EQ(3, a.Head()->element());
|
|
|
|
EXPECT_EQ(2, a.Head()->next()->element());
|
|
|
|
EXPECT_EQ(1, a.Last()->element());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests inserting at a location other than the beginning using
|
|
|
|
// List::InsertAfter().
|
|
|
|
TEST(ListTest, InsertAfterNotAtBeginning) {
|
|
|
|
// Prepares a singleton list.
|
|
|
|
List<int> a;
|
|
|
|
a.PushBack(1);
|
|
|
|
|
|
|
|
// Inserts at the end of a singleton list.
|
|
|
|
a.InsertAfter(a.Last(), 2);
|
|
|
|
ASSERT_EQ(2u, a.size());
|
|
|
|
EXPECT_EQ(1, a.Head()->element());
|
|
|
|
EXPECT_EQ(2, a.Last()->element());
|
|
|
|
|
|
|
|
// Inserts at the end of a list with more than one elements.
|
|
|
|
a.InsertAfter(a.Last(), 3);
|
|
|
|
ASSERT_EQ(3u, a.size());
|
|
|
|
EXPECT_EQ(1, a.Head()->element());
|
|
|
|
EXPECT_EQ(2, a.Head()->next()->element());
|
|
|
|
EXPECT_EQ(3, a.Last()->element());
|
|
|
|
|
|
|
|
// Inserts in the middle of a list.
|
|
|
|
a.InsertAfter(a.Head(), 4);
|
|
|
|
ASSERT_EQ(4u, a.size());
|
|
|
|
EXPECT_EQ(1, a.Head()->element());
|
|
|
|
EXPECT_EQ(4, a.Head()->next()->element());
|
|
|
|
EXPECT_EQ(2, a.Head()->next()->next()->element());
|
|
|
|
EXPECT_EQ(3, a.Last()->element());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Tests the String class.
|
|
|
|
|
|
|
|
// Tests String's constructors.
|
|
|
|
TEST(StringTest, Constructors) {
|
|
|
|
// Default ctor.
|
|
|
|
String s1;
|
2008-07-31 18:34:08 +00:00
|
|
|
// We aren't using EXPECT_EQ(NULL, s1.c_str()) because comparing
|
|
|
|
// pointers with NULL isn't supported on all platforms.
|
|
|
|
EXPECT_TRUE(NULL == s1.c_str());
|
2008-07-03 22:38:12 +00:00
|
|
|
|
|
|
|
// Implicitly constructs from a C-string.
|
|
|
|
String s2 = "Hi";
|
|
|
|
EXPECT_STREQ("Hi", s2.c_str());
|
|
|
|
|
|
|
|
// Constructs from a C-string and a length.
|
|
|
|
String s3("hello", 3);
|
|
|
|
EXPECT_STREQ("hel", s3.c_str());
|
|
|
|
|
|
|
|
// Copy ctor.
|
|
|
|
String s4 = s3;
|
|
|
|
EXPECT_STREQ("hel", s4.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests String::ShowCString().
|
|
|
|
TEST(StringTest, ShowCString) {
|
|
|
|
EXPECT_STREQ("(null)", String::ShowCString(NULL));
|
|
|
|
EXPECT_STREQ("", String::ShowCString(""));
|
|
|
|
EXPECT_STREQ("foo", String::ShowCString("foo"));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests String::ShowCStringQuoted().
|
|
|
|
TEST(StringTest, ShowCStringQuoted) {
|
|
|
|
EXPECT_STREQ("(null)",
|
|
|
|
String::ShowCStringQuoted(NULL).c_str());
|
|
|
|
EXPECT_STREQ("\"\"",
|
|
|
|
String::ShowCStringQuoted("").c_str());
|
|
|
|
EXPECT_STREQ("\"foo\"",
|
|
|
|
String::ShowCStringQuoted("foo").c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests String::operator==().
|
|
|
|
TEST(StringTest, Equals) {
|
|
|
|
const String null(NULL);
|
|
|
|
EXPECT_TRUE(null == NULL); // NOLINT
|
|
|
|
EXPECT_FALSE(null == ""); // NOLINT
|
|
|
|
EXPECT_FALSE(null == "bar"); // NOLINT
|
|
|
|
|
|
|
|
const String empty("");
|
|
|
|
EXPECT_FALSE(empty == NULL); // NOLINT
|
|
|
|
EXPECT_TRUE(empty == ""); // NOLINT
|
|
|
|
EXPECT_FALSE(empty == "bar"); // NOLINT
|
|
|
|
|
|
|
|
const String foo("foo");
|
|
|
|
EXPECT_FALSE(foo == NULL); // NOLINT
|
|
|
|
EXPECT_FALSE(foo == ""); // NOLINT
|
|
|
|
EXPECT_FALSE(foo == "bar"); // NOLINT
|
|
|
|
EXPECT_TRUE(foo == "foo"); // NOLINT
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests String::operator!=().
|
|
|
|
TEST(StringTest, NotEquals) {
|
|
|
|
const String null(NULL);
|
|
|
|
EXPECT_FALSE(null != NULL); // NOLINT
|
|
|
|
EXPECT_TRUE(null != ""); // NOLINT
|
|
|
|
EXPECT_TRUE(null != "bar"); // NOLINT
|
|
|
|
|
|
|
|
const String empty("");
|
|
|
|
EXPECT_TRUE(empty != NULL); // NOLINT
|
|
|
|
EXPECT_FALSE(empty != ""); // NOLINT
|
|
|
|
EXPECT_TRUE(empty != "bar"); // NOLINT
|
|
|
|
|
|
|
|
const String foo("foo");
|
|
|
|
EXPECT_TRUE(foo != NULL); // NOLINT
|
|
|
|
EXPECT_TRUE(foo != ""); // NOLINT
|
|
|
|
EXPECT_TRUE(foo != "bar"); // NOLINT
|
|
|
|
EXPECT_FALSE(foo != "foo"); // NOLINT
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests String::EndsWith().
|
|
|
|
TEST(StringTest, EndsWith) {
|
|
|
|
EXPECT_TRUE(String("foobar").EndsWith("bar"));
|
|
|
|
EXPECT_TRUE(String("foobar").EndsWith(""));
|
|
|
|
EXPECT_TRUE(String("").EndsWith(""));
|
|
|
|
|
|
|
|
EXPECT_FALSE(String("foobar").EndsWith("foo"));
|
|
|
|
EXPECT_FALSE(String("").EndsWith("foo"));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests String::EndsWithCaseInsensitive().
|
|
|
|
TEST(StringTest, EndsWithCaseInsensitive) {
|
|
|
|
EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("BAR"));
|
|
|
|
EXPECT_TRUE(String("foobaR").EndsWithCaseInsensitive("bar"));
|
|
|
|
EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive(""));
|
|
|
|
EXPECT_TRUE(String("").EndsWithCaseInsensitive(""));
|
|
|
|
|
|
|
|
EXPECT_FALSE(String("Foobar").EndsWithCaseInsensitive("foo"));
|
|
|
|
EXPECT_FALSE(String("foobar").EndsWithCaseInsensitive("Foo"));
|
|
|
|
EXPECT_FALSE(String("").EndsWithCaseInsensitive("foo"));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that NULL can be assigned to a String.
|
|
|
|
TEST(StringTest, CanBeAssignedNULL) {
|
|
|
|
const String src(NULL);
|
|
|
|
String dest;
|
|
|
|
|
|
|
|
dest = src;
|
|
|
|
EXPECT_STREQ(NULL, dest.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that the empty string "" can be assigned to a String.
|
|
|
|
TEST(StringTest, CanBeAssignedEmpty) {
|
|
|
|
const String src("");
|
|
|
|
String dest;
|
|
|
|
|
|
|
|
dest = src;
|
|
|
|
EXPECT_STREQ("", dest.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that a non-empty string can be assigned to a String.
|
|
|
|
TEST(StringTest, CanBeAssignedNonEmpty) {
|
|
|
|
const String src("hello");
|
|
|
|
String dest;
|
|
|
|
|
|
|
|
dest = src;
|
|
|
|
EXPECT_STREQ("hello", dest.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that a String can be assigned to itself.
|
|
|
|
TEST(StringTest, CanBeAssignedSelf) {
|
|
|
|
String dest("hello");
|
|
|
|
|
|
|
|
dest = dest;
|
|
|
|
EXPECT_STREQ("hello", dest.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef GTEST_OS_WINDOWS
|
|
|
|
|
|
|
|
// Tests String::ShowWideCString().
|
|
|
|
TEST(StringTest, ShowWideCString) {
|
|
|
|
EXPECT_STREQ("(null)",
|
|
|
|
String::ShowWideCString(NULL).c_str());
|
|
|
|
EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
|
|
|
|
EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests String::ShowWideCStringQuoted().
|
|
|
|
TEST(StringTest, ShowWideCStringQuoted) {
|
|
|
|
EXPECT_STREQ("(null)",
|
|
|
|
String::ShowWideCStringQuoted(NULL).c_str());
|
|
|
|
EXPECT_STREQ("L\"\"",
|
|
|
|
String::ShowWideCStringQuoted(L"").c_str());
|
|
|
|
EXPECT_STREQ("L\"foo\"",
|
|
|
|
String::ShowWideCStringQuoted(L"foo").c_str());
|
|
|
|
}
|
|
|
|
|
2008-07-31 18:34:08 +00:00
|
|
|
#ifdef _WIN32_WCE
|
|
|
|
TEST(StringTest, AnsiAndUtf16Null) {
|
|
|
|
EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
|
|
|
|
EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(StringTest, AnsiAndUtf16ConvertBasic) {
|
|
|
|
const char* ansi = String::Utf16ToAnsi(L"str");
|
|
|
|
EXPECT_STREQ("str", ansi);
|
|
|
|
delete [] ansi;
|
|
|
|
const WCHAR* utf16 = String::AnsiToUtf16("str");
|
|
|
|
EXPECT_TRUE(wcsncmp(L"str", utf16, 3) == 0);
|
|
|
|
delete [] utf16;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
|
|
|
|
const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
|
|
|
|
EXPECT_STREQ(".:\\ \"*?", ansi);
|
|
|
|
delete [] ansi;
|
|
|
|
const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
|
|
|
|
EXPECT_TRUE(wcsncmp(L".:\\ \"*?", utf16, 3) == 0);
|
|
|
|
delete [] utf16;
|
|
|
|
}
|
|
|
|
#endif // _WIN32_WCE
|
|
|
|
|
2008-07-03 22:38:12 +00:00
|
|
|
#endif // GTEST_OS_WINDOWS
|
|
|
|
|
|
|
|
// Tests TestProperty construction.
|
|
|
|
TEST(TestPropertyTest, StringValue) {
|
|
|
|
TestProperty property("key", "1");
|
|
|
|
EXPECT_STREQ("key", property.key());
|
|
|
|
EXPECT_STREQ("1", property.value());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestProperty replacing a value.
|
|
|
|
TEST(TestPropertyTest, ReplaceStringValue) {
|
|
|
|
TestProperty property("key", "1");
|
|
|
|
EXPECT_STREQ("1", property.value());
|
|
|
|
property.SetValue("2");
|
|
|
|
EXPECT_STREQ("2", property.value());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests the TestPartResult class.
|
|
|
|
|
|
|
|
// The test fixture for testing TestPartResult.
|
2008-08-06 21:43:15 +00:00
|
|
|
class TestPartResultTest : public Test {
|
2008-07-03 22:38:12 +00:00
|
|
|
protected:
|
|
|
|
TestPartResultTest()
|
2008-08-06 21:43:15 +00:00
|
|
|
: r1_(TPRT_SUCCESS, "foo/bar.cc", 10, "Success!"),
|
|
|
|
r2_(TPRT_NONFATAL_FAILURE, "foo/bar.cc", -1, "Failure!"),
|
|
|
|
r3_(TPRT_FATAL_FAILURE, NULL, -1, "Failure!") {}
|
2008-07-03 22:38:12 +00:00
|
|
|
|
|
|
|
TestPartResult r1_, r2_, r3_;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Tests TestPartResult::type()
|
|
|
|
TEST_F(TestPartResultTest, type) {
|
2008-08-06 21:43:15 +00:00
|
|
|
EXPECT_EQ(TPRT_SUCCESS, r1_.type());
|
|
|
|
EXPECT_EQ(TPRT_NONFATAL_FAILURE, r2_.type());
|
|
|
|
EXPECT_EQ(TPRT_FATAL_FAILURE, r3_.type());
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestPartResult::file_name()
|
|
|
|
TEST_F(TestPartResultTest, file_name) {
|
|
|
|
EXPECT_STREQ("foo/bar.cc", r1_.file_name());
|
|
|
|
EXPECT_STREQ(NULL, r3_.file_name());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestPartResult::line_number()
|
|
|
|
TEST_F(TestPartResultTest, line_number) {
|
|
|
|
EXPECT_EQ(10, r1_.line_number());
|
|
|
|
EXPECT_EQ(-1, r2_.line_number());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestPartResult::message()
|
|
|
|
TEST_F(TestPartResultTest, message) {
|
|
|
|
EXPECT_STREQ("Success!", r1_.message());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestPartResult::passed()
|
|
|
|
TEST_F(TestPartResultTest, Passed) {
|
|
|
|
EXPECT_TRUE(r1_.passed());
|
|
|
|
EXPECT_FALSE(r2_.passed());
|
|
|
|
EXPECT_FALSE(r3_.passed());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestPartResult::failed()
|
|
|
|
TEST_F(TestPartResultTest, Failed) {
|
|
|
|
EXPECT_FALSE(r1_.failed());
|
|
|
|
EXPECT_TRUE(r2_.failed());
|
|
|
|
EXPECT_TRUE(r3_.failed());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestPartResult::fatally_failed()
|
|
|
|
TEST_F(TestPartResultTest, FatallyFailed) {
|
|
|
|
EXPECT_FALSE(r1_.fatally_failed());
|
|
|
|
EXPECT_FALSE(r2_.fatally_failed());
|
|
|
|
EXPECT_TRUE(r3_.fatally_failed());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestPartResult::nonfatally_failed()
|
|
|
|
TEST_F(TestPartResultTest, NonfatallyFailed) {
|
|
|
|
EXPECT_FALSE(r1_.nonfatally_failed());
|
|
|
|
EXPECT_TRUE(r2_.nonfatally_failed());
|
|
|
|
EXPECT_FALSE(r3_.nonfatally_failed());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests the TestPartResultArray class.
|
|
|
|
|
2008-08-06 21:43:15 +00:00
|
|
|
class TestPartResultArrayTest : public Test {
|
2008-07-03 22:38:12 +00:00
|
|
|
protected:
|
|
|
|
TestPartResultArrayTest()
|
2008-08-06 21:43:15 +00:00
|
|
|
: r1_(TPRT_NONFATAL_FAILURE, "foo/bar.cc", -1, "Failure 1"),
|
|
|
|
r2_(TPRT_FATAL_FAILURE, "foo/bar.cc", -1, "Failure 2") {}
|
2008-07-03 22:38:12 +00:00
|
|
|
|
|
|
|
const TestPartResult r1_, r2_;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Tests that TestPartResultArray initially has size 0.
|
|
|
|
TEST_F(TestPartResultArrayTest, InitialSizeIsZero) {
|
|
|
|
TestPartResultArray results;
|
|
|
|
EXPECT_EQ(0, results.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that TestPartResultArray contains the given TestPartResult
|
|
|
|
// after one Append() operation.
|
|
|
|
TEST_F(TestPartResultArrayTest, ContainsGivenResultAfterAppend) {
|
|
|
|
TestPartResultArray results;
|
|
|
|
results.Append(r1_);
|
|
|
|
EXPECT_EQ(1, results.size());
|
|
|
|
EXPECT_STREQ("Failure 1", results.GetTestPartResult(0).message());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that TestPartResultArray contains the given TestPartResults
|
|
|
|
// after two Append() operations.
|
|
|
|
TEST_F(TestPartResultArrayTest, ContainsGivenResultsAfterTwoAppends) {
|
|
|
|
TestPartResultArray results;
|
|
|
|
results.Append(r1_);
|
|
|
|
results.Append(r2_);
|
|
|
|
EXPECT_EQ(2, results.size());
|
|
|
|
EXPECT_STREQ("Failure 1", results.GetTestPartResult(0).message());
|
|
|
|
EXPECT_STREQ("Failure 2", results.GetTestPartResult(1).message());
|
|
|
|
}
|
|
|
|
|
|
|
|
void ScopedFakeTestPartResultReporterTestHelper() {
|
|
|
|
FAIL() << "Expected fatal failure.";
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that ScopedFakeTestPartResultReporter intercepts test
|
|
|
|
// failures.
|
|
|
|
TEST(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
|
|
|
|
TestPartResultArray results;
|
|
|
|
{
|
|
|
|
ScopedFakeTestPartResultReporter reporter(&results);
|
|
|
|
ADD_FAILURE() << "Expected non-fatal failure.";
|
|
|
|
ScopedFakeTestPartResultReporterTestHelper();
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPECT_EQ(2, results.size());
|
|
|
|
EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
|
|
|
|
EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests the TestResult class
|
|
|
|
|
|
|
|
// The test fixture for testing TestResult.
|
2008-08-06 21:43:15 +00:00
|
|
|
class TestResultTest : public Test {
|
2008-07-03 22:38:12 +00:00
|
|
|
protected:
|
|
|
|
typedef List<TestPartResult> TPRList;
|
|
|
|
|
|
|
|
// We make use of 2 TestPartResult objects,
|
|
|
|
TestPartResult * pr1, * pr2;
|
|
|
|
|
|
|
|
// ... and 3 TestResult objects.
|
|
|
|
TestResult * r0, * r1, * r2;
|
|
|
|
|
|
|
|
virtual void SetUp() {
|
|
|
|
// pr1 is for success.
|
2008-08-06 21:43:15 +00:00
|
|
|
pr1 = new TestPartResult(TPRT_SUCCESS, "foo/bar.cc", 10, "Success!");
|
2008-07-03 22:38:12 +00:00
|
|
|
|
|
|
|
// pr2 is for fatal failure.
|
2008-08-06 21:43:15 +00:00
|
|
|
pr2 = new TestPartResult(TPRT_FATAL_FAILURE, "foo/bar.cc",
|
|
|
|
-1, // This line number means "unknown"
|
|
|
|
"Failure!");
|
2008-07-03 22:38:12 +00:00
|
|
|
|
|
|
|
// Creates the TestResult objects.
|
|
|
|
r0 = new TestResult();
|
|
|
|
r1 = new TestResult();
|
|
|
|
r2 = new TestResult();
|
|
|
|
|
|
|
|
// In order to test TestResult, we need to modify its internal
|
|
|
|
// state, in particular the TestPartResult list it holds.
|
|
|
|
// test_part_results() returns a const reference to this list.
|
|
|
|
// We cast it to a non-const object s.t. it can be modified (yes,
|
|
|
|
// this is a hack).
|
|
|
|
TPRList * list1, * list2;
|
|
|
|
list1 = const_cast<List<TestPartResult> *>(
|
|
|
|
& r1->test_part_results());
|
|
|
|
list2 = const_cast<List<TestPartResult> *>(
|
|
|
|
& r2->test_part_results());
|
|
|
|
|
|
|
|
// r0 is an empty TestResult.
|
|
|
|
|
|
|
|
// r1 contains a single SUCCESS TestPartResult.
|
|
|
|
list1->PushBack(*pr1);
|
|
|
|
|
|
|
|
// r2 contains a SUCCESS, and a FAILURE.
|
|
|
|
list2->PushBack(*pr1);
|
|
|
|
list2->PushBack(*pr2);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void TearDown() {
|
|
|
|
delete pr1;
|
|
|
|
delete pr2;
|
|
|
|
|
|
|
|
delete r0;
|
|
|
|
delete r1;
|
|
|
|
delete r2;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// Tests TestResult::test_part_results()
|
|
|
|
TEST_F(TestResultTest, test_part_results) {
|
|
|
|
ASSERT_EQ(0u, r0->test_part_results().size());
|
|
|
|
ASSERT_EQ(1u, r1->test_part_results().size());
|
|
|
|
ASSERT_EQ(2u, r2->test_part_results().size());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestResult::successful_part_count()
|
|
|
|
TEST_F(TestResultTest, successful_part_count) {
|
|
|
|
ASSERT_EQ(0u, r0->successful_part_count());
|
|
|
|
ASSERT_EQ(1u, r1->successful_part_count());
|
|
|
|
ASSERT_EQ(1u, r2->successful_part_count());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestResult::failed_part_count()
|
|
|
|
TEST_F(TestResultTest, failed_part_count) {
|
|
|
|
ASSERT_EQ(0u, r0->failed_part_count());
|
|
|
|
ASSERT_EQ(0u, r1->failed_part_count());
|
|
|
|
ASSERT_EQ(1u, r2->failed_part_count());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestResult::total_part_count()
|
|
|
|
TEST_F(TestResultTest, total_part_count) {
|
|
|
|
ASSERT_EQ(0u, r0->total_part_count());
|
|
|
|
ASSERT_EQ(1u, r1->total_part_count());
|
|
|
|
ASSERT_EQ(2u, r2->total_part_count());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestResult::Passed()
|
|
|
|
TEST_F(TestResultTest, Passed) {
|
|
|
|
ASSERT_TRUE(r0->Passed());
|
|
|
|
ASSERT_TRUE(r1->Passed());
|
|
|
|
ASSERT_FALSE(r2->Passed());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestResult::Failed()
|
|
|
|
TEST_F(TestResultTest, Failed) {
|
|
|
|
ASSERT_FALSE(r0->Failed());
|
|
|
|
ASSERT_FALSE(r1->Failed());
|
|
|
|
ASSERT_TRUE(r2->Failed());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestResult::test_properties() has no properties when none are added.
|
|
|
|
TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
|
|
|
|
TestResult test_result;
|
|
|
|
ASSERT_EQ(0u, test_result.test_properties().size());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestResult::test_properties() has the expected property when added.
|
|
|
|
TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
|
|
|
|
TestResult test_result;
|
|
|
|
TestProperty property("key_1", "1");
|
|
|
|
test_result.RecordProperty(property);
|
|
|
|
const List<TestProperty>& properties = test_result.test_properties();
|
|
|
|
ASSERT_EQ(1u, properties.size());
|
|
|
|
TestProperty actual_property = properties.Head()->element();
|
|
|
|
EXPECT_STREQ("key_1", actual_property.key());
|
|
|
|
EXPECT_STREQ("1", actual_property.value());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestResult::test_properties() has multiple properties when added.
|
|
|
|
TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
|
|
|
|
TestResult test_result;
|
|
|
|
TestProperty property_1("key_1", "1");
|
|
|
|
TestProperty property_2("key_2", "2");
|
|
|
|
test_result.RecordProperty(property_1);
|
|
|
|
test_result.RecordProperty(property_2);
|
|
|
|
const List<TestProperty>& properties = test_result.test_properties();
|
|
|
|
ASSERT_EQ(2u, properties.size());
|
|
|
|
TestProperty actual_property_1 = properties.Head()->element();
|
|
|
|
EXPECT_STREQ("key_1", actual_property_1.key());
|
|
|
|
EXPECT_STREQ("1", actual_property_1.value());
|
|
|
|
|
|
|
|
TestProperty actual_property_2 = properties.Last()->element();
|
|
|
|
EXPECT_STREQ("key_2", actual_property_2.key());
|
|
|
|
EXPECT_STREQ("2", actual_property_2.value());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestResult::test_properties() overrides values for duplicate keys.
|
|
|
|
TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
|
|
|
|
TestResult test_result;
|
|
|
|
TestProperty property_1_1("key_1", "1");
|
|
|
|
TestProperty property_2_1("key_2", "2");
|
|
|
|
TestProperty property_1_2("key_1", "12");
|
|
|
|
TestProperty property_2_2("key_2", "22");
|
|
|
|
test_result.RecordProperty(property_1_1);
|
|
|
|
test_result.RecordProperty(property_2_1);
|
|
|
|
test_result.RecordProperty(property_1_2);
|
|
|
|
test_result.RecordProperty(property_2_2);
|
|
|
|
|
|
|
|
const List<TestProperty>& properties = test_result.test_properties();
|
|
|
|
ASSERT_EQ(2u, properties.size());
|
|
|
|
TestProperty actual_property_1 = properties.Head()->element();
|
|
|
|
EXPECT_STREQ("key_1", actual_property_1.key());
|
|
|
|
EXPECT_STREQ("12", actual_property_1.value());
|
|
|
|
|
|
|
|
TestProperty actual_property_2 = properties.Last()->element();
|
|
|
|
EXPECT_STREQ("key_2", actual_property_2.key());
|
|
|
|
EXPECT_STREQ("22", actual_property_2.value());
|
|
|
|
}
|
|
|
|
|
|
|
|
// When a property using a reserved key is supplied to this function, it tests
|
|
|
|
// that a non-fatal failure is added, a fatal failure is not added, and that the
|
|
|
|
// property is not recorded.
|
|
|
|
void ExpectNonFatalFailureRecordingPropertyWithReservedKey(const char* key) {
|
|
|
|
TestResult test_result;
|
|
|
|
TestProperty property("name", "1");
|
|
|
|
EXPECT_NONFATAL_FAILURE(test_result.RecordProperty(property), "Reserved key");
|
|
|
|
ASSERT_TRUE(test_result.test_properties().IsEmpty()) << "Not recorded";
|
|
|
|
}
|
|
|
|
|
|
|
|
// Attempting to recording a property with the Reserved literal "name"
|
|
|
|
// should add a non-fatal failure and the property should not be recorded.
|
|
|
|
TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledName) {
|
|
|
|
ExpectNonFatalFailureRecordingPropertyWithReservedKey("name");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Attempting to recording a property with the Reserved literal "status"
|
|
|
|
// should add a non-fatal failure and the property should not be recorded.
|
|
|
|
TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledStatus) {
|
|
|
|
ExpectNonFatalFailureRecordingPropertyWithReservedKey("status");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Attempting to recording a property with the Reserved literal "time"
|
|
|
|
// should add a non-fatal failure and the property should not be recorded.
|
|
|
|
TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledTime) {
|
|
|
|
ExpectNonFatalFailureRecordingPropertyWithReservedKey("time");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Attempting to recording a property with the Reserved literal "classname"
|
|
|
|
// should add a non-fatal failure and the property should not be recorded.
|
|
|
|
TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledClassname) {
|
|
|
|
ExpectNonFatalFailureRecordingPropertyWithReservedKey("classname");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that GTestFlagSaver works on Windows and Mac.
|
|
|
|
|
2008-08-06 21:43:15 +00:00
|
|
|
class GTestFlagSaverTest : public Test {
|
2008-07-03 22:38:12 +00:00
|
|
|
protected:
|
|
|
|
// Saves the Google Test flags such that we can restore them later, and
|
|
|
|
// then sets them to their default values. This will be called
|
|
|
|
// before the first test in this test case is run.
|
|
|
|
static void SetUpTestCase() {
|
2008-08-06 21:43:15 +00:00
|
|
|
saver_ = new GTestFlagSaver;
|
|
|
|
|
|
|
|
GTEST_FLAG(break_on_failure) = false;
|
|
|
|
GTEST_FLAG(catch_exceptions) = false;
|
|
|
|
GTEST_FLAG(color) = "auto";
|
|
|
|
GTEST_FLAG(filter) = "";
|
|
|
|
GTEST_FLAG(list_tests) = false;
|
|
|
|
GTEST_FLAG(output) = "";
|
|
|
|
GTEST_FLAG(print_time) = false;
|
|
|
|
GTEST_FLAG(repeat) = 1;
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Restores the Google Test flags that the tests have modified. This will
|
|
|
|
// be called after the last test in this test case is run.
|
|
|
|
static void TearDownTestCase() {
|
|
|
|
delete saver_;
|
|
|
|
saver_ = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Verifies that the Google Test flags have their default values, and then
|
|
|
|
// modifies each of them.
|
|
|
|
void VerifyAndModifyFlags() {
|
2008-08-06 21:43:15 +00:00
|
|
|
EXPECT_FALSE(GTEST_FLAG(break_on_failure));
|
|
|
|
EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
|
|
|
|
EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
|
|
|
|
EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
|
|
|
|
EXPECT_FALSE(GTEST_FLAG(list_tests));
|
|
|
|
EXPECT_STREQ("", GTEST_FLAG(output).c_str());
|
|
|
|
EXPECT_FALSE(GTEST_FLAG(print_time));
|
|
|
|
EXPECT_EQ(1, GTEST_FLAG(repeat));
|
|
|
|
|
|
|
|
GTEST_FLAG(break_on_failure) = true;
|
|
|
|
GTEST_FLAG(catch_exceptions) = true;
|
|
|
|
GTEST_FLAG(color) = "no";
|
|
|
|
GTEST_FLAG(filter) = "abc";
|
|
|
|
GTEST_FLAG(list_tests) = true;
|
|
|
|
GTEST_FLAG(output) = "xml:foo.xml";
|
|
|
|
GTEST_FLAG(print_time) = true;
|
|
|
|
GTEST_FLAG(repeat) = 100;
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
private:
|
|
|
|
// For saving Google Test flags during this test case.
|
2008-08-06 21:43:15 +00:00
|
|
|
static GTestFlagSaver* saver_;
|
2008-07-03 22:38:12 +00:00
|
|
|
};
|
|
|
|
|
2008-08-06 21:43:15 +00:00
|
|
|
GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
|
2008-07-03 22:38:12 +00:00
|
|
|
|
|
|
|
// Google Test doesn't guarantee the order of tests. The following two
|
|
|
|
// tests are designed to work regardless of their order.
|
|
|
|
|
|
|
|
// Modifies the Google Test flags in the test body.
|
|
|
|
TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
|
|
|
|
VerifyAndModifyFlags();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Verifies that the Google Test flags in the body of the previous test were
|
|
|
|
// restored to their original values.
|
|
|
|
TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
|
|
|
|
VerifyAndModifyFlags();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sets an environment variable with the given name to the given
|
|
|
|
// value. If the value argument is "", unsets the environment
|
|
|
|
// variable. The caller must ensure that both arguments are not NULL.
|
|
|
|
static void SetEnv(const char* name, const char* value) {
|
|
|
|
#ifdef _WIN32_WCE
|
|
|
|
// Environment variables are not supported on Windows CE.
|
|
|
|
return;
|
|
|
|
#elif defined(GTEST_OS_WINDOWS) // If we are on Windows proper.
|
2008-08-06 21:43:15 +00:00
|
|
|
_putenv((Message() << name << "=" << value).GetString().c_str());
|
2008-07-03 22:38:12 +00:00
|
|
|
#else
|
|
|
|
if (*value == '\0') {
|
|
|
|
unsetenv(name);
|
|
|
|
} else {
|
|
|
|
setenv(name, value, 1);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef _WIN32_WCE
|
|
|
|
// Environment variables are not supported on Windows CE.
|
|
|
|
|
2008-08-06 21:43:15 +00:00
|
|
|
using testing::internal::Int32FromGTestEnv;
|
2008-07-03 22:38:12 +00:00
|
|
|
|
|
|
|
// Tests Int32FromGTestEnv().
|
|
|
|
|
|
|
|
// Tests that Int32FromGTestEnv() returns the default value when the
|
|
|
|
// environment variable is not set.
|
|
|
|
TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
|
|
|
|
SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "");
|
|
|
|
EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that Int32FromGTestEnv() returns the default value when the
|
|
|
|
// environment variable overflows as an Int32.
|
|
|
|
TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
|
|
|
|
printf("(expecting 2 warnings)\n");
|
|
|
|
|
|
|
|
SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "12345678987654321");
|
|
|
|
EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
|
|
|
|
|
|
|
|
SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "-12345678987654321");
|
|
|
|
EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that Int32FromGTestEnv() returns the default value when the
|
|
|
|
// environment variable does not represent a valid decimal integer.
|
|
|
|
TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
|
|
|
|
printf("(expecting 2 warnings)\n");
|
|
|
|
|
|
|
|
SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "A1");
|
|
|
|
EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
|
|
|
|
|
|
|
|
SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "12X");
|
|
|
|
EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that Int32FromGTestEnv() parses and returns the value of the
|
|
|
|
// environment variable when it represents a valid decimal integer in
|
|
|
|
// the range of an Int32.
|
|
|
|
TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
|
|
|
|
SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "123");
|
|
|
|
EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
|
|
|
|
|
|
|
|
SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "-321");
|
|
|
|
EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
|
|
|
|
}
|
|
|
|
#endif // !defined(_WIN32_WCE)
|
|
|
|
|
|
|
|
// Tests ParseInt32Flag().
|
|
|
|
|
|
|
|
// Tests that ParseInt32Flag() returns false and doesn't change the
|
|
|
|
// output value when the flag has wrong format
|
|
|
|
TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
|
|
|
|
Int32 value = 123;
|
|
|
|
EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
|
|
|
|
EXPECT_EQ(123, value);
|
|
|
|
|
|
|
|
EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
|
|
|
|
EXPECT_EQ(123, value);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that ParseInt32Flag() returns false and doesn't change the
|
|
|
|
// output value when the flag overflows as an Int32.
|
|
|
|
TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
|
|
|
|
printf("(expecting 2 warnings)\n");
|
|
|
|
|
|
|
|
Int32 value = 123;
|
|
|
|
EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
|
|
|
|
EXPECT_EQ(123, value);
|
|
|
|
|
|
|
|
EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
|
|
|
|
EXPECT_EQ(123, value);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that ParseInt32Flag() returns false and doesn't change the
|
|
|
|
// output value when the flag does not represent a valid decimal
|
|
|
|
// integer.
|
|
|
|
TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
|
|
|
|
printf("(expecting 2 warnings)\n");
|
|
|
|
|
|
|
|
Int32 value = 123;
|
|
|
|
EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
|
|
|
|
EXPECT_EQ(123, value);
|
|
|
|
|
|
|
|
EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
|
|
|
|
EXPECT_EQ(123, value);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that ParseInt32Flag() parses the value of the flag and
|
|
|
|
// returns true when the flag represents a valid decimal integer in
|
|
|
|
// the range of an Int32.
|
|
|
|
TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
|
|
|
|
Int32 value = 123;
|
|
|
|
EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX "abc=456", "abc", &value));
|
|
|
|
EXPECT_EQ(456, value);
|
|
|
|
|
|
|
|
EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX "abc=-789", "abc", &value));
|
|
|
|
EXPECT_EQ(-789, value);
|
|
|
|
}
|
|
|
|
|
|
|
|
// For the same reason we are not explicitly testing everything in the
|
|
|
|
// Test class, there are no separate tests for the following classes:
|
|
|
|
//
|
|
|
|
// TestCase, UnitTest, UnitTestResultPrinter.
|
|
|
|
//
|
|
|
|
// Similarly, there are no separate tests for the following macros:
|
|
|
|
//
|
|
|
|
// TEST, TEST_F, RUN_ALL_TESTS
|
|
|
|
|
|
|
|
// This group of tests is for predicate assertions (ASSERT_PRED*, etc)
|
|
|
|
// of various arities. They do not attempt to be exhaustive. Rather,
|
|
|
|
// view them as smoke tests that can be easily reviewed and verified.
|
|
|
|
// A more complete set of tests for predicate assertions can be found
|
|
|
|
// in gtest_pred_impl_unittest.cc.
|
|
|
|
|
|
|
|
// First, some predicates and predicate-formatters needed by the tests.
|
|
|
|
|
|
|
|
// Returns true iff the argument is an even number.
|
|
|
|
bool IsEven(int n) {
|
|
|
|
return (n % 2) == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// A functor that returns true iff the argument is an even number.
|
|
|
|
struct IsEvenFunctor {
|
|
|
|
bool operator()(int n) { return IsEven(n); }
|
|
|
|
};
|
|
|
|
|
|
|
|
// A predicate-formatter function that asserts the argument is an even
|
|
|
|
// number.
|
2008-08-06 21:43:15 +00:00
|
|
|
AssertionResult AssertIsEven(const char* expr, int n) {
|
2008-07-03 22:38:12 +00:00
|
|
|
if (IsEven(n)) {
|
2008-08-06 21:43:15 +00:00
|
|
|
return AssertionSuccess();
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
|
2008-08-06 21:43:15 +00:00
|
|
|
Message msg;
|
2008-07-03 22:38:12 +00:00
|
|
|
msg << expr << " evaluates to " << n << ", which is not even.";
|
2008-08-06 21:43:15 +00:00
|
|
|
return AssertionFailure(msg);
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// A predicate-formatter functor that asserts the argument is an even
|
|
|
|
// number.
|
|
|
|
struct AssertIsEvenFunctor {
|
2008-08-06 21:43:15 +00:00
|
|
|
AssertionResult operator()(const char* expr, int n) {
|
2008-07-03 22:38:12 +00:00
|
|
|
return AssertIsEven(expr, n);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// Returns true iff the sum of the arguments is an even number.
|
|
|
|
bool SumIsEven2(int n1, int n2) {
|
|
|
|
return IsEven(n1 + n2);
|
|
|
|
}
|
|
|
|
|
|
|
|
// A functor that returns true iff the sum of the arguments is an even
|
|
|
|
// number.
|
|
|
|
struct SumIsEven3Functor {
|
|
|
|
bool operator()(int n1, int n2, int n3) {
|
|
|
|
return IsEven(n1 + n2 + n3);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// A predicate-formatter function that asserts the sum of the
|
|
|
|
// arguments is an even number.
|
2008-08-06 21:43:15 +00:00
|
|
|
AssertionResult AssertSumIsEven4(
|
|
|
|
const char* e1, const char* e2, const char* e3, const char* e4,
|
|
|
|
int n1, int n2, int n3, int n4) {
|
2008-07-03 22:38:12 +00:00
|
|
|
const int sum = n1 + n2 + n3 + n4;
|
|
|
|
if (IsEven(sum)) {
|
2008-08-06 21:43:15 +00:00
|
|
|
return AssertionSuccess();
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
|
2008-08-06 21:43:15 +00:00
|
|
|
Message msg;
|
2008-07-03 22:38:12 +00:00
|
|
|
msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
|
|
|
|
<< " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
|
|
|
|
<< ") evaluates to " << sum << ", which is not even.";
|
2008-08-06 21:43:15 +00:00
|
|
|
return AssertionFailure(msg);
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// A predicate-formatter functor that asserts the sum of the arguments
|
|
|
|
// is an even number.
|
|
|
|
struct AssertSumIsEven5Functor {
|
2008-08-06 21:43:15 +00:00
|
|
|
AssertionResult operator()(
|
|
|
|
const char* e1, const char* e2, const char* e3, const char* e4,
|
|
|
|
const char* e5, int n1, int n2, int n3, int n4, int n5) {
|
2008-07-03 22:38:12 +00:00
|
|
|
const int sum = n1 + n2 + n3 + n4 + n5;
|
|
|
|
if (IsEven(sum)) {
|
2008-08-06 21:43:15 +00:00
|
|
|
return AssertionSuccess();
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
|
2008-08-06 21:43:15 +00:00
|
|
|
Message msg;
|
2008-07-03 22:38:12 +00:00
|
|
|
msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
|
|
|
|
<< " ("
|
|
|
|
<< n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
|
|
|
|
<< ") evaluates to " << sum << ", which is not even.";
|
2008-08-06 21:43:15 +00:00
|
|
|
return AssertionFailure(msg);
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Tests unary predicate assertions.
|
|
|
|
|
|
|
|
// Tests unary predicate assertions that don't use a custom formatter.
|
|
|
|
TEST(Pred1Test, WithoutFormat) {
|
|
|
|
// Success cases.
|
|
|
|
EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
|
|
|
|
ASSERT_PRED1(IsEven, 4);
|
|
|
|
|
|
|
|
// Failure cases.
|
|
|
|
EXPECT_NONFATAL_FAILURE({ // NOLINT
|
|
|
|
EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
|
|
|
|
}, "This failure is expected.");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
|
|
|
|
"evaluates to false");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests unary predicate assertions that use a custom formatter.
|
|
|
|
TEST(Pred1Test, WithFormat) {
|
|
|
|
// Success cases.
|
|
|
|
EXPECT_PRED_FORMAT1(AssertIsEven, 2);
|
|
|
|
ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
|
|
|
|
<< "This failure is UNEXPECTED!";
|
|
|
|
|
|
|
|
// Failure cases.
|
|
|
|
const int n = 5;
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
|
|
|
|
"n evaluates to 5, which is not even.");
|
|
|
|
EXPECT_FATAL_FAILURE({ // NOLINT
|
|
|
|
ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
|
|
|
|
}, "This failure is expected.");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that unary predicate assertions evaluates their arguments
|
|
|
|
// exactly once.
|
|
|
|
TEST(Pred1Test, SingleEvaluationOnFailure) {
|
|
|
|
// A success case.
|
|
|
|
static int n = 0;
|
|
|
|
EXPECT_PRED1(IsEven, n++);
|
|
|
|
EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
|
|
|
|
|
|
|
|
// A failure case.
|
|
|
|
EXPECT_FATAL_FAILURE({ // NOLINT
|
|
|
|
ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
|
|
|
|
<< "This failure is expected.";
|
|
|
|
}, "This failure is expected.");
|
|
|
|
EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Tests predicate assertions whose arity is >= 2.
|
|
|
|
|
|
|
|
// Tests predicate assertions that don't use a custom formatter.
|
|
|
|
TEST(PredTest, WithoutFormat) {
|
|
|
|
// Success cases.
|
|
|
|
ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
|
|
|
|
EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
|
|
|
|
|
|
|
|
// Failure cases.
|
|
|
|
const int n1 = 1;
|
|
|
|
const int n2 = 2;
|
|
|
|
EXPECT_NONFATAL_FAILURE({ // NOLINT
|
|
|
|
EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
|
|
|
|
}, "This failure is expected.");
|
|
|
|
EXPECT_FATAL_FAILURE({ // NOLINT
|
|
|
|
ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
|
|
|
|
}, "evaluates to false");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests predicate assertions that use a custom formatter.
|
|
|
|
TEST(PredTest, WithFormat) {
|
|
|
|
// Success cases.
|
|
|
|
ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
|
|
|
|
"This failure is UNEXPECTED!";
|
|
|
|
EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
|
|
|
|
|
|
|
|
// Failure cases.
|
|
|
|
const int n1 = 1;
|
|
|
|
const int n2 = 2;
|
|
|
|
const int n3 = 4;
|
|
|
|
const int n4 = 6;
|
|
|
|
EXPECT_NONFATAL_FAILURE({ // NOLINT
|
|
|
|
EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
|
|
|
|
}, "evaluates to 13, which is not even.");
|
|
|
|
EXPECT_FATAL_FAILURE({ // NOLINT
|
|
|
|
ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
|
|
|
|
<< "This failure is expected.";
|
|
|
|
}, "This failure is expected.");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that predicate assertions evaluates their arguments
|
|
|
|
// exactly once.
|
|
|
|
TEST(PredTest, SingleEvaluationOnFailure) {
|
|
|
|
// A success case.
|
|
|
|
int n1 = 0;
|
|
|
|
int n2 = 0;
|
|
|
|
EXPECT_PRED2(SumIsEven2, n1++, n2++);
|
|
|
|
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
|
|
|
|
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
|
|
|
|
|
|
|
|
// Another success case.
|
|
|
|
n1 = n2 = 0;
|
|
|
|
int n3 = 0;
|
|
|
|
int n4 = 0;
|
|
|
|
int n5 = 0;
|
|
|
|
ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
|
|
|
|
n1++, n2++, n3++, n4++, n5++)
|
|
|
|
<< "This failure is UNEXPECTED!";
|
|
|
|
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
|
|
|
|
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
|
|
|
|
EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
|
|
|
|
EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
|
|
|
|
EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
|
|
|
|
|
|
|
|
// A failure case.
|
|
|
|
n1 = n2 = n3 = 0;
|
|
|
|
EXPECT_NONFATAL_FAILURE({ // NOLINT
|
|
|
|
EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
|
|
|
|
<< "This failure is expected.";
|
|
|
|
}, "This failure is expected.");
|
|
|
|
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
|
|
|
|
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
|
|
|
|
EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
|
|
|
|
|
|
|
|
// Another failure case.
|
|
|
|
n1 = n2 = n3 = n4 = 0;
|
|
|
|
EXPECT_NONFATAL_FAILURE({ // NOLINT
|
|
|
|
EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
|
|
|
|
}, "evaluates to 1, which is not even.");
|
|
|
|
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
|
|
|
|
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
|
|
|
|
EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
|
|
|
|
EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Some helper functions for testing using overloaded/template
|
|
|
|
// functions with ASSERT_PREDn and EXPECT_PREDn.
|
|
|
|
|
|
|
|
bool IsPositive(int n) {
|
|
|
|
return n > 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsPositive(double x) {
|
|
|
|
return x > 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
bool IsNegative(T x) {
|
|
|
|
return x < 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T1, typename T2>
|
|
|
|
bool GreaterThan(T1 x1, T2 x2) {
|
|
|
|
return x1 > x2;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that overloaded functions can be used in *_PRED* as long as
|
|
|
|
// their types are explicitly specified.
|
|
|
|
TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
|
|
|
|
EXPECT_PRED1(static_cast<bool (*)(int)>(IsPositive), 5); // NOLINT
|
|
|
|
ASSERT_PRED1(static_cast<bool (*)(double)>(IsPositive), 6.0); // NOLINT
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that template functions can be used in *_PRED* as long as
|
|
|
|
// their types are explicitly specified.
|
|
|
|
TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
|
|
|
|
EXPECT_PRED1(IsNegative<int>, -5);
|
|
|
|
// Makes sure that we can handle templates with more than one
|
|
|
|
// parameter.
|
|
|
|
ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Some helper functions for testing using overloaded/template
|
|
|
|
// functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
|
|
|
|
|
2008-08-06 21:43:15 +00:00
|
|
|
AssertionResult IsPositiveFormat(const char* expr, int n) {
|
|
|
|
return n > 0 ? AssertionSuccess() :
|
|
|
|
AssertionFailure(Message() << "Failure");
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
|
2008-08-06 21:43:15 +00:00
|
|
|
AssertionResult IsPositiveFormat(const char* expr, double x) {
|
|
|
|
return x > 0 ? AssertionSuccess() :
|
|
|
|
AssertionFailure(Message() << "Failure");
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
2008-08-06 21:43:15 +00:00
|
|
|
AssertionResult IsNegativeFormat(const char* expr, T x) {
|
|
|
|
return x < 0 ? AssertionSuccess() :
|
|
|
|
AssertionFailure(Message() << "Failure");
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T1, typename T2>
|
2008-08-06 21:43:15 +00:00
|
|
|
AssertionResult EqualsFormat(const char* expr1, const char* expr2,
|
|
|
|
const T1& x1, const T2& x2) {
|
|
|
|
return x1 == x2 ? AssertionSuccess() :
|
|
|
|
AssertionFailure(Message() << "Failure");
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that overloaded functions can be used in *_PRED_FORMAT*
|
|
|
|
// without explictly specifying their types.
|
|
|
|
TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
|
|
|
|
EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
|
|
|
|
ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that template functions can be used in *_PRED_FORMAT* without
|
|
|
|
// explicitly specifying their types.
|
|
|
|
TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
|
|
|
|
EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
|
|
|
|
ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Tests string assertions.
|
|
|
|
|
|
|
|
// Tests ASSERT_STREQ with non-NULL arguments.
|
|
|
|
TEST(StringAssertionTest, ASSERT_STREQ) {
|
|
|
|
const char * const p1 = "good";
|
|
|
|
ASSERT_STREQ(p1, p1);
|
|
|
|
|
|
|
|
// Let p2 have the same content as p1, but be at a different address.
|
|
|
|
const char p2[] = "good";
|
|
|
|
ASSERT_STREQ(p1, p2);
|
|
|
|
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
|
|
|
|
"Expected: \"bad\"");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_STREQ with NULL arguments.
|
|
|
|
TEST(StringAssertionTest, ASSERT_STREQ_Null) {
|
|
|
|
ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
|
|
|
|
"non-null");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_STREQ with NULL arguments.
|
|
|
|
TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
|
|
|
|
"non-null");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_STRNE.
|
|
|
|
TEST(StringAssertionTest, ASSERT_STRNE) {
|
|
|
|
ASSERT_STRNE("hi", "Hi");
|
|
|
|
ASSERT_STRNE("Hi", NULL);
|
|
|
|
ASSERT_STRNE(NULL, "Hi");
|
|
|
|
ASSERT_STRNE("", NULL);
|
|
|
|
ASSERT_STRNE(NULL, "");
|
|
|
|
ASSERT_STRNE("", "Hi");
|
|
|
|
ASSERT_STRNE("Hi", "");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
|
|
|
|
"\"Hi\" vs \"Hi\"");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_STRCASEEQ.
|
|
|
|
TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
|
|
|
|
ASSERT_STRCASEEQ("hi", "Hi");
|
|
|
|
ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
|
|
|
|
|
|
|
|
ASSERT_STRCASEEQ("", "");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
|
|
|
|
"(ignoring case)");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_STRCASENE.
|
|
|
|
TEST(StringAssertionTest, ASSERT_STRCASENE) {
|
|
|
|
ASSERT_STRCASENE("hi1", "Hi2");
|
|
|
|
ASSERT_STRCASENE("Hi", NULL);
|
|
|
|
ASSERT_STRCASENE(NULL, "Hi");
|
|
|
|
ASSERT_STRCASENE("", NULL);
|
|
|
|
ASSERT_STRCASENE(NULL, "");
|
|
|
|
ASSERT_STRCASENE("", "Hi");
|
|
|
|
ASSERT_STRCASENE("Hi", "");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
|
|
|
|
"(ignoring case)");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests *_STREQ on wide strings.
|
|
|
|
TEST(StringAssertionTest, STREQ_Wide) {
|
|
|
|
// NULL strings.
|
|
|
|
ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
|
|
|
|
|
|
|
|
// Empty strings.
|
|
|
|
ASSERT_STREQ(L"", L"");
|
|
|
|
|
|
|
|
// Non-null vs NULL.
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
|
|
|
|
"non-null");
|
|
|
|
|
|
|
|
// Equal strings.
|
|
|
|
EXPECT_STREQ(L"Hi", L"Hi");
|
|
|
|
|
|
|
|
// Unequal strings.
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
|
|
|
|
"Abc");
|
|
|
|
|
|
|
|
// Strings containing wide characters.
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
|
|
|
|
"abc");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests *_STRNE on wide strings.
|
|
|
|
TEST(StringAssertionTest, STRNE_Wide) {
|
|
|
|
// NULL strings.
|
|
|
|
EXPECT_NONFATAL_FAILURE({ // NOLINT
|
|
|
|
EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
|
|
|
|
}, "");
|
|
|
|
|
|
|
|
// Empty strings.
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
|
|
|
|
"L\"\"");
|
|
|
|
|
|
|
|
// Non-null vs NULL.
|
|
|
|
ASSERT_STRNE(L"non-null", NULL);
|
|
|
|
|
|
|
|
// Equal strings.
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
|
|
|
|
"L\"Hi\"");
|
|
|
|
|
|
|
|
// Unequal strings.
|
|
|
|
EXPECT_STRNE(L"abc", L"Abc");
|
|
|
|
|
|
|
|
// Strings containing wide characters.
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
|
|
|
|
"abc");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests for ::testing::IsSubstring().
|
|
|
|
|
|
|
|
// Tests that IsSubstring() returns the correct result when the input
|
|
|
|
// argument type is const char*.
|
|
|
|
TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
|
|
|
|
EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
|
|
|
|
EXPECT_FALSE(IsSubstring("", "", "b", NULL));
|
|
|
|
EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
|
|
|
|
|
|
|
|
EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
|
|
|
|
EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that IsSubstring() returns the correct result when the input
|
|
|
|
// argument type is const wchar_t*.
|
|
|
|
TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
|
|
|
|
EXPECT_FALSE(IsSubstring("", "", NULL, L"a"));
|
|
|
|
EXPECT_FALSE(IsSubstring("", "", L"b", NULL));
|
|
|
|
EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
|
|
|
|
|
|
|
|
EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
|
|
|
|
EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that IsSubstring() generates the correct message when the input
|
|
|
|
// argument type is const char*.
|
|
|
|
TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
|
|
|
|
EXPECT_STREQ("Value of: needle_expr\n"
|
|
|
|
" Actual: \"needle\"\n"
|
|
|
|
"Expected: a substring of haystack_expr\n"
|
|
|
|
"Which is: \"haystack\"",
|
2008-08-06 21:43:15 +00:00
|
|
|
IsSubstring("needle_expr", "haystack_expr",
|
|
|
|
"needle", "haystack").failure_message());
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#if GTEST_HAS_STD_STRING
|
|
|
|
|
|
|
|
// Tests that IsSubstring returns the correct result when the input
|
|
|
|
// argument type is ::std::string.
|
|
|
|
TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
|
2008-08-06 21:43:15 +00:00
|
|
|
EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
|
|
|
|
EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
#endif // GTEST_HAS_STD_STRING
|
|
|
|
|
|
|
|
#if GTEST_HAS_STD_WSTRING
|
|
|
|
// Tests that IsSubstring returns the correct result when the input
|
|
|
|
// argument type is ::std::wstring.
|
|
|
|
TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
|
|
|
|
EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
|
|
|
|
EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that IsSubstring() generates the correct message when the input
|
|
|
|
// argument type is ::std::wstring.
|
|
|
|
TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
|
|
|
|
EXPECT_STREQ("Value of: needle_expr\n"
|
|
|
|
" Actual: L\"needle\"\n"
|
|
|
|
"Expected: a substring of haystack_expr\n"
|
|
|
|
"Which is: L\"haystack\"",
|
2008-08-06 21:43:15 +00:00
|
|
|
IsSubstring(
|
2008-07-03 22:38:12 +00:00
|
|
|
"needle_expr", "haystack_expr",
|
|
|
|
::std::wstring(L"needle"), L"haystack").failure_message());
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // GTEST_HAS_STD_WSTRING
|
|
|
|
|
|
|
|
// Tests for ::testing::IsNotSubstring().
|
|
|
|
|
|
|
|
// Tests that IsNotSubstring() returns the correct result when the input
|
|
|
|
// argument type is const char*.
|
|
|
|
TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
|
|
|
|
EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
|
|
|
|
EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that IsNotSubstring() returns the correct result when the input
|
|
|
|
// argument type is const wchar_t*.
|
|
|
|
TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
|
|
|
|
EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
|
|
|
|
EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that IsNotSubstring() generates the correct message when the input
|
|
|
|
// argument type is const wchar_t*.
|
|
|
|
TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
|
|
|
|
EXPECT_STREQ("Value of: needle_expr\n"
|
|
|
|
" Actual: L\"needle\"\n"
|
|
|
|
"Expected: not a substring of haystack_expr\n"
|
|
|
|
"Which is: L\"two needles\"",
|
2008-08-06 21:43:15 +00:00
|
|
|
IsNotSubstring(
|
2008-07-03 22:38:12 +00:00
|
|
|
"needle_expr", "haystack_expr",
|
|
|
|
L"needle", L"two needles").failure_message());
|
|
|
|
}
|
|
|
|
|
|
|
|
#if GTEST_HAS_STD_STRING
|
|
|
|
|
|
|
|
// Tests that IsNotSubstring returns the correct result when the input
|
|
|
|
// argument type is ::std::string.
|
|
|
|
TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
|
|
|
|
EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
|
|
|
|
EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that IsNotSubstring() generates the correct message when the input
|
|
|
|
// argument type is ::std::string.
|
|
|
|
TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
|
|
|
|
EXPECT_STREQ("Value of: needle_expr\n"
|
|
|
|
" Actual: \"needle\"\n"
|
|
|
|
"Expected: not a substring of haystack_expr\n"
|
|
|
|
"Which is: \"two needles\"",
|
2008-08-06 21:43:15 +00:00
|
|
|
IsNotSubstring(
|
2008-07-03 22:38:12 +00:00
|
|
|
"needle_expr", "haystack_expr",
|
|
|
|
::std::string("needle"), "two needles").failure_message());
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // GTEST_HAS_STD_STRING
|
|
|
|
|
|
|
|
#if GTEST_HAS_STD_WSTRING
|
|
|
|
|
|
|
|
// Tests that IsNotSubstring returns the correct result when the input
|
|
|
|
// argument type is ::std::wstring.
|
|
|
|
TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
|
|
|
|
EXPECT_FALSE(
|
|
|
|
IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
|
|
|
|
EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // GTEST_HAS_STD_WSTRING
|
|
|
|
|
|
|
|
// Tests floating-point assertions.
|
|
|
|
|
|
|
|
template <typename RawType>
|
2008-08-06 21:43:15 +00:00
|
|
|
class FloatingPointTest : public Test {
|
2008-07-03 22:38:12 +00:00
|
|
|
protected:
|
|
|
|
typedef typename testing::internal::FloatingPoint<RawType> Floating;
|
|
|
|
typedef typename Floating::Bits Bits;
|
|
|
|
|
|
|
|
virtual void SetUp() {
|
|
|
|
const size_t max_ulps = Floating::kMaxUlps;
|
|
|
|
|
|
|
|
// The bits that represent 0.0.
|
|
|
|
const Bits zero_bits = Floating(0).bits();
|
|
|
|
|
|
|
|
// Makes some numbers close to 0.0.
|
|
|
|
close_to_positive_zero_ = Floating::ReinterpretBits(zero_bits + max_ulps/2);
|
|
|
|
close_to_negative_zero_ = -Floating::ReinterpretBits(
|
|
|
|
zero_bits + max_ulps - max_ulps/2);
|
|
|
|
further_from_negative_zero_ = -Floating::ReinterpretBits(
|
|
|
|
zero_bits + max_ulps + 1 - max_ulps/2);
|
|
|
|
|
|
|
|
// The bits that represent 1.0.
|
|
|
|
const Bits one_bits = Floating(1).bits();
|
|
|
|
|
|
|
|
// Makes some numbers close to 1.0.
|
|
|
|
close_to_one_ = Floating::ReinterpretBits(one_bits + max_ulps);
|
|
|
|
further_from_one_ = Floating::ReinterpretBits(one_bits + max_ulps + 1);
|
|
|
|
|
|
|
|
// +infinity.
|
|
|
|
infinity_ = Floating::Infinity();
|
|
|
|
|
|
|
|
// The bits that represent +infinity.
|
|
|
|
const Bits infinity_bits = Floating(infinity_).bits();
|
|
|
|
|
|
|
|
// Makes some numbers close to infinity.
|
|
|
|
close_to_infinity_ = Floating::ReinterpretBits(infinity_bits - max_ulps);
|
|
|
|
further_from_infinity_ = Floating::ReinterpretBits(
|
|
|
|
infinity_bits - max_ulps - 1);
|
|
|
|
|
|
|
|
// Makes some NAN's.
|
|
|
|
nan1_ = Floating::ReinterpretBits(Floating::kExponentBitMask | 1);
|
|
|
|
nan2_ = Floating::ReinterpretBits(Floating::kExponentBitMask | 200);
|
|
|
|
}
|
|
|
|
|
|
|
|
void TestSize() {
|
|
|
|
EXPECT_EQ(sizeof(RawType), sizeof(Bits));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Pre-calculated numbers to be used by the tests.
|
|
|
|
|
|
|
|
static RawType close_to_positive_zero_;
|
|
|
|
static RawType close_to_negative_zero_;
|
|
|
|
static RawType further_from_negative_zero_;
|
|
|
|
|
|
|
|
static RawType close_to_one_;
|
|
|
|
static RawType further_from_one_;
|
|
|
|
|
|
|
|
static RawType infinity_;
|
|
|
|
static RawType close_to_infinity_;
|
|
|
|
static RawType further_from_infinity_;
|
|
|
|
|
|
|
|
static RawType nan1_;
|
|
|
|
static RawType nan2_;
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename RawType>
|
|
|
|
RawType FloatingPointTest<RawType>::close_to_positive_zero_;
|
|
|
|
|
|
|
|
template <typename RawType>
|
|
|
|
RawType FloatingPointTest<RawType>::close_to_negative_zero_;
|
|
|
|
|
|
|
|
template <typename RawType>
|
|
|
|
RawType FloatingPointTest<RawType>::further_from_negative_zero_;
|
|
|
|
|
|
|
|
template <typename RawType>
|
|
|
|
RawType FloatingPointTest<RawType>::close_to_one_;
|
|
|
|
|
|
|
|
template <typename RawType>
|
|
|
|
RawType FloatingPointTest<RawType>::further_from_one_;
|
|
|
|
|
|
|
|
template <typename RawType>
|
|
|
|
RawType FloatingPointTest<RawType>::infinity_;
|
|
|
|
|
|
|
|
template <typename RawType>
|
|
|
|
RawType FloatingPointTest<RawType>::close_to_infinity_;
|
|
|
|
|
|
|
|
template <typename RawType>
|
|
|
|
RawType FloatingPointTest<RawType>::further_from_infinity_;
|
|
|
|
|
|
|
|
template <typename RawType>
|
|
|
|
RawType FloatingPointTest<RawType>::nan1_;
|
|
|
|
|
|
|
|
template <typename RawType>
|
|
|
|
RawType FloatingPointTest<RawType>::nan2_;
|
|
|
|
|
|
|
|
// Instantiates FloatingPointTest for testing *_FLOAT_EQ.
|
|
|
|
typedef FloatingPointTest<float> FloatTest;
|
|
|
|
|
|
|
|
// Tests that the size of Float::Bits matches the size of float.
|
|
|
|
TEST_F(FloatTest, Size) {
|
|
|
|
TestSize();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests comparing with +0 and -0.
|
|
|
|
TEST_F(FloatTest, Zeros) {
|
|
|
|
EXPECT_FLOAT_EQ(0.0, -0.0);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
|
|
|
|
"1.0");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
|
|
|
|
"1.5");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests comparing numbers close to 0.
|
|
|
|
//
|
|
|
|
// This ensures that *_FLOAT_EQ handles the sign correctly and no
|
|
|
|
// overflow occurs when comparing numbers whose absolute value is very
|
|
|
|
// small.
|
|
|
|
TEST_F(FloatTest, AlmostZeros) {
|
|
|
|
EXPECT_FLOAT_EQ(0.0, close_to_positive_zero_);
|
|
|
|
EXPECT_FLOAT_EQ(-0.0, close_to_negative_zero_);
|
|
|
|
EXPECT_FLOAT_EQ(close_to_positive_zero_, close_to_negative_zero_);
|
|
|
|
|
|
|
|
EXPECT_FATAL_FAILURE({ // NOLINT
|
|
|
|
ASSERT_FLOAT_EQ(close_to_positive_zero_, further_from_negative_zero_);
|
|
|
|
}, "further_from_negative_zero_");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests comparing numbers close to each other.
|
|
|
|
TEST_F(FloatTest, SmallDiff) {
|
|
|
|
EXPECT_FLOAT_EQ(1.0, close_to_one_);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, further_from_one_),
|
|
|
|
"further_from_one_");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests comparing numbers far apart.
|
|
|
|
TEST_F(FloatTest, LargeDiff) {
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
|
|
|
|
"3.0");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests comparing with infinity.
|
|
|
|
//
|
|
|
|
// This ensures that no overflow occurs when comparing numbers whose
|
|
|
|
// absolute value is very large.
|
|
|
|
TEST_F(FloatTest, Infinity) {
|
|
|
|
EXPECT_FLOAT_EQ(infinity_, close_to_infinity_);
|
|
|
|
EXPECT_FLOAT_EQ(-infinity_, -close_to_infinity_);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(infinity_, -infinity_),
|
|
|
|
"-infinity_");
|
|
|
|
|
|
|
|
// This is interesting as the representations of infinity_ and nan1_
|
|
|
|
// are only 1 DLP apart.
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(infinity_, nan1_),
|
|
|
|
"nan1_");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that comparing with NAN always returns false.
|
|
|
|
TEST_F(FloatTest, NaN) {
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(nan1_, nan1_),
|
|
|
|
"nan1_");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(nan1_, nan2_),
|
|
|
|
"nan2_");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, nan1_),
|
|
|
|
"nan1_");
|
|
|
|
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(nan1_, infinity_),
|
|
|
|
"infinity_");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that *_FLOAT_EQ are reflexive.
|
|
|
|
TEST_F(FloatTest, Reflexive) {
|
|
|
|
EXPECT_FLOAT_EQ(0.0, 0.0);
|
|
|
|
EXPECT_FLOAT_EQ(1.0, 1.0);
|
|
|
|
ASSERT_FLOAT_EQ(infinity_, infinity_);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that *_FLOAT_EQ are commutative.
|
|
|
|
TEST_F(FloatTest, Commutative) {
|
|
|
|
// We already tested EXPECT_FLOAT_EQ(1.0, close_to_one_).
|
|
|
|
EXPECT_FLOAT_EQ(close_to_one_, 1.0);
|
|
|
|
|
|
|
|
// We already tested EXPECT_FLOAT_EQ(1.0, further_from_one_).
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(further_from_one_, 1.0),
|
|
|
|
"1.0");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests EXPECT_NEAR.
|
|
|
|
TEST_F(FloatTest, EXPECT_NEAR) {
|
|
|
|
EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
|
|
|
|
EXPECT_NEAR(2.0f, 3.0f, 1.0f);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.2f, 0.1f), // NOLINT
|
|
|
|
"The difference between 1.0f and 1.2f is 0.2, "
|
|
|
|
"which exceeds 0.1f");
|
|
|
|
// To work around a bug in gcc 2.95.0, there is intentionally no
|
|
|
|
// space after the first comma in the previous line.
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_NEAR.
|
|
|
|
TEST_F(FloatTest, ASSERT_NEAR) {
|
|
|
|
ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
|
|
|
|
ASSERT_NEAR(2.0f, 3.0f, 1.0f);
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.2f, 0.1f), // NOLINT
|
|
|
|
"The difference between 1.0f and 1.2f is 0.2, "
|
|
|
|
"which exceeds 0.1f");
|
|
|
|
// To work around a bug in gcc 2.95.0, there is intentionally no
|
|
|
|
// space after the first comma in the previous line.
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests the cases where FloatLE() should succeed.
|
|
|
|
TEST_F(FloatTest, FloatLESucceeds) {
|
2008-08-06 21:43:15 +00:00
|
|
|
EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f); // When val1 < val2,
|
|
|
|
ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f); // val1 == val2,
|
2008-07-03 22:38:12 +00:00
|
|
|
|
|
|
|
// or when val1 is greater than, but almost equals to, val2.
|
2008-08-06 21:43:15 +00:00
|
|
|
EXPECT_PRED_FORMAT2(FloatLE, close_to_positive_zero_, 0.0f);
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Tests the cases where FloatLE() should fail.
|
|
|
|
TEST_F(FloatTest, FloatLEFails) {
|
|
|
|
// When val1 is greater than val2 by a large margin,
|
2008-08-06 21:43:15 +00:00
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
|
2008-07-03 22:38:12 +00:00
|
|
|
"(2.0f) <= (1.0f)");
|
|
|
|
|
|
|
|
// or by a small yet non-negligible margin,
|
|
|
|
EXPECT_NONFATAL_FAILURE({ // NOLINT
|
2008-08-06 21:43:15 +00:00
|
|
|
EXPECT_PRED_FORMAT2(FloatLE, further_from_one_, 1.0f);
|
2008-07-03 22:38:12 +00:00
|
|
|
}, "(further_from_one_) <= (1.0f)");
|
|
|
|
|
|
|
|
// or when either val1 or val2 is NaN.
|
|
|
|
EXPECT_NONFATAL_FAILURE({ // NOLINT
|
2008-08-06 21:43:15 +00:00
|
|
|
EXPECT_PRED_FORMAT2(FloatLE, nan1_, infinity_);
|
2008-07-03 22:38:12 +00:00
|
|
|
}, "(nan1_) <= (infinity_)");
|
|
|
|
EXPECT_NONFATAL_FAILURE({ // NOLINT
|
2008-08-06 21:43:15 +00:00
|
|
|
EXPECT_PRED_FORMAT2(FloatLE, -infinity_, nan1_);
|
2008-07-03 22:38:12 +00:00
|
|
|
}, "(-infinity_) <= (nan1_)");
|
|
|
|
|
|
|
|
EXPECT_FATAL_FAILURE({ // NOLINT
|
2008-08-06 21:43:15 +00:00
|
|
|
ASSERT_PRED_FORMAT2(FloatLE, nan1_, nan1_);
|
2008-07-03 22:38:12 +00:00
|
|
|
}, "(nan1_) <= (nan1_)");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
|
|
|
|
typedef FloatingPointTest<double> DoubleTest;
|
|
|
|
|
|
|
|
// Tests that the size of Double::Bits matches the size of double.
|
|
|
|
TEST_F(DoubleTest, Size) {
|
|
|
|
TestSize();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests comparing with +0 and -0.
|
|
|
|
TEST_F(DoubleTest, Zeros) {
|
|
|
|
EXPECT_DOUBLE_EQ(0.0, -0.0);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
|
|
|
|
"1.0");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
|
|
|
|
"1.0");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests comparing numbers close to 0.
|
|
|
|
//
|
|
|
|
// This ensures that *_DOUBLE_EQ handles the sign correctly and no
|
|
|
|
// overflow occurs when comparing numbers whose absolute value is very
|
|
|
|
// small.
|
|
|
|
TEST_F(DoubleTest, AlmostZeros) {
|
|
|
|
EXPECT_DOUBLE_EQ(0.0, close_to_positive_zero_);
|
|
|
|
EXPECT_DOUBLE_EQ(-0.0, close_to_negative_zero_);
|
|
|
|
EXPECT_DOUBLE_EQ(close_to_positive_zero_, close_to_negative_zero_);
|
|
|
|
|
|
|
|
EXPECT_FATAL_FAILURE({ // NOLINT
|
|
|
|
ASSERT_DOUBLE_EQ(close_to_positive_zero_, further_from_negative_zero_);
|
|
|
|
}, "further_from_negative_zero_");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests comparing numbers close to each other.
|
|
|
|
TEST_F(DoubleTest, SmallDiff) {
|
|
|
|
EXPECT_DOUBLE_EQ(1.0, close_to_one_);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, further_from_one_),
|
|
|
|
"further_from_one_");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests comparing numbers far apart.
|
|
|
|
TEST_F(DoubleTest, LargeDiff) {
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
|
|
|
|
"3.0");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests comparing with infinity.
|
|
|
|
//
|
|
|
|
// This ensures that no overflow occurs when comparing numbers whose
|
|
|
|
// absolute value is very large.
|
|
|
|
TEST_F(DoubleTest, Infinity) {
|
|
|
|
EXPECT_DOUBLE_EQ(infinity_, close_to_infinity_);
|
|
|
|
EXPECT_DOUBLE_EQ(-infinity_, -close_to_infinity_);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(infinity_, -infinity_),
|
|
|
|
"-infinity_");
|
|
|
|
|
|
|
|
// This is interesting as the representations of infinity_ and nan1_
|
|
|
|
// are only 1 DLP apart.
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(infinity_, nan1_),
|
|
|
|
"nan1_");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that comparing with NAN always returns false.
|
|
|
|
TEST_F(DoubleTest, NaN) {
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(nan1_, nan1_),
|
|
|
|
"nan1_");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(nan1_, nan2_), "nan2_");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, nan1_), "nan1_");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(nan1_, infinity_), "infinity_");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that *_DOUBLE_EQ are reflexive.
|
|
|
|
TEST_F(DoubleTest, Reflexive) {
|
|
|
|
EXPECT_DOUBLE_EQ(0.0, 0.0);
|
|
|
|
EXPECT_DOUBLE_EQ(1.0, 1.0);
|
|
|
|
ASSERT_DOUBLE_EQ(infinity_, infinity_);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that *_DOUBLE_EQ are commutative.
|
|
|
|
TEST_F(DoubleTest, Commutative) {
|
|
|
|
// We already tested EXPECT_DOUBLE_EQ(1.0, close_to_one_).
|
|
|
|
EXPECT_DOUBLE_EQ(close_to_one_, 1.0);
|
|
|
|
|
|
|
|
// We already tested EXPECT_DOUBLE_EQ(1.0, further_from_one_).
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(further_from_one_, 1.0), "1.0");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests EXPECT_NEAR.
|
|
|
|
TEST_F(DoubleTest, EXPECT_NEAR) {
|
|
|
|
EXPECT_NEAR(-1.0, -1.1, 0.2);
|
|
|
|
EXPECT_NEAR(2.0, 3.0, 1.0);
|
|
|
|
#ifdef __SYMBIAN32__
|
|
|
|
// Symbian STLport has currently a buggy floating point output.
|
|
|
|
// TODO(mikie): fix STLport.
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.2, 0.1), // NOLINT
|
|
|
|
"The difference between 1.0 and 1.2 is 0.19999:, "
|
|
|
|
"which exceeds 0.1");
|
|
|
|
#else // !__SYMBIAN32__
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.2, 0.1), // NOLINT
|
|
|
|
"The difference between 1.0 and 1.2 is 0.2, "
|
|
|
|
"which exceeds 0.1");
|
|
|
|
// To work around a bug in gcc 2.95.0, there is intentionally no
|
|
|
|
// space after the first comma in the previous statement.
|
|
|
|
#endif // __SYMBIAN32__
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_NEAR.
|
|
|
|
TEST_F(DoubleTest, ASSERT_NEAR) {
|
|
|
|
ASSERT_NEAR(-1.0, -1.1, 0.2);
|
|
|
|
ASSERT_NEAR(2.0, 3.0, 1.0);
|
|
|
|
#ifdef __SYMBIAN32__
|
|
|
|
// Symbian STLport has currently a buggy floating point output.
|
|
|
|
// TODO(mikie): fix STLport.
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.2, 0.1), // NOLINT
|
|
|
|
"The difference between 1.0 and 1.2 is 0.19999:, "
|
|
|
|
"which exceeds 0.1");
|
|
|
|
#else // ! __SYMBIAN32__
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.2, 0.1), // NOLINT
|
|
|
|
"The difference between 1.0 and 1.2 is 0.2, "
|
|
|
|
"which exceeds 0.1");
|
|
|
|
// To work around a bug in gcc 2.95.0, there is intentionally no
|
|
|
|
// space after the first comma in the previous statement.
|
|
|
|
#endif // __SYMBIAN32__
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests the cases where DoubleLE() should succeed.
|
|
|
|
TEST_F(DoubleTest, DoubleLESucceeds) {
|
2008-08-06 21:43:15 +00:00
|
|
|
EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0); // When val1 < val2,
|
|
|
|
ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0); // val1 == val2,
|
2008-07-03 22:38:12 +00:00
|
|
|
|
|
|
|
// or when val1 is greater than, but almost equals to, val2.
|
2008-08-06 21:43:15 +00:00
|
|
|
EXPECT_PRED_FORMAT2(DoubleLE, close_to_positive_zero_, 0.0);
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Tests the cases where DoubleLE() should fail.
|
|
|
|
TEST_F(DoubleTest, DoubleLEFails) {
|
|
|
|
// When val1 is greater than val2 by a large margin,
|
2008-08-06 21:43:15 +00:00
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
|
2008-07-03 22:38:12 +00:00
|
|
|
"(2.0) <= (1.0)");
|
|
|
|
|
|
|
|
// or by a small yet non-negligible margin,
|
|
|
|
EXPECT_NONFATAL_FAILURE({ // NOLINT
|
2008-08-06 21:43:15 +00:00
|
|
|
EXPECT_PRED_FORMAT2(DoubleLE, further_from_one_, 1.0);
|
2008-07-03 22:38:12 +00:00
|
|
|
}, "(further_from_one_) <= (1.0)");
|
|
|
|
|
|
|
|
// or when either val1 or val2 is NaN.
|
|
|
|
EXPECT_NONFATAL_FAILURE({ // NOLINT
|
2008-08-06 21:43:15 +00:00
|
|
|
EXPECT_PRED_FORMAT2(DoubleLE, nan1_, infinity_);
|
2008-07-03 22:38:12 +00:00
|
|
|
}, "(nan1_) <= (infinity_)");
|
|
|
|
EXPECT_NONFATAL_FAILURE({ // NOLINT
|
2008-08-06 21:43:15 +00:00
|
|
|
EXPECT_PRED_FORMAT2(DoubleLE, -infinity_, nan1_);
|
2008-07-03 22:38:12 +00:00
|
|
|
}, " (-infinity_) <= (nan1_)");
|
|
|
|
EXPECT_FATAL_FAILURE({ // NOLINT
|
2008-08-06 21:43:15 +00:00
|
|
|
ASSERT_PRED_FORMAT2(DoubleLE, nan1_, nan1_);
|
2008-07-03 22:38:12 +00:00
|
|
|
}, "(nan1_) <= (nan1_)");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Verifies that a test or test case whose name starts with DISABLED_ is
|
|
|
|
// not run.
|
|
|
|
|
|
|
|
// A test whose name starts with DISABLED_.
|
|
|
|
// Should not run.
|
|
|
|
TEST(DisabledTest, DISABLED_TestShouldNotRun) {
|
|
|
|
FAIL() << "Unexpected failure: Disabled test should not be run.";
|
|
|
|
}
|
|
|
|
|
|
|
|
// A test whose name does not start with DISABLED_.
|
|
|
|
// Should run.
|
|
|
|
TEST(DisabledTest, NotDISABLED_TestShouldRun) {
|
|
|
|
EXPECT_EQ(1, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// A test case whose name starts with DISABLED_.
|
|
|
|
// Should not run.
|
|
|
|
TEST(DISABLED_TestCase, TestShouldNotRun) {
|
|
|
|
FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
|
|
|
|
}
|
|
|
|
|
|
|
|
// A test case and test whose names start with DISABLED_.
|
|
|
|
// Should not run.
|
|
|
|
TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
|
|
|
|
FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check that when all tests in a test case are disabled, SetupTestCase() and
|
|
|
|
// TearDownTestCase() are not called.
|
2008-08-06 21:43:15 +00:00
|
|
|
class DisabledTestsTest : public Test {
|
2008-07-03 22:38:12 +00:00
|
|
|
protected:
|
|
|
|
static void SetUpTestCase() {
|
|
|
|
FAIL() << "Unexpected failure: All tests disabled in test case. "
|
|
|
|
"SetupTestCase() should not be called.";
|
|
|
|
}
|
|
|
|
|
|
|
|
static void TearDownTestCase() {
|
|
|
|
FAIL() << "Unexpected failure: All tests disabled in test case. "
|
|
|
|
"TearDownTestCase() should not be called.";
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
|
|
|
|
FAIL() << "Unexpected failure: Disabled test should not be run.";
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
|
|
|
|
FAIL() << "Unexpected failure: Disabled test should not be run.";
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Tests that assertion macros evaluate their arguments exactly once.
|
|
|
|
|
2008-08-06 21:43:15 +00:00
|
|
|
class SingleEvaluationTest : public Test {
|
2008-07-03 22:38:12 +00:00
|
|
|
protected:
|
|
|
|
SingleEvaluationTest() {
|
|
|
|
p1_ = s1_;
|
|
|
|
p2_ = s2_;
|
|
|
|
a_ = 0;
|
|
|
|
b_ = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// This helper function is needed by the FailedASSERT_STREQ test
|
|
|
|
// below.
|
|
|
|
static void CompareAndIncrementCharPtrs() {
|
|
|
|
ASSERT_STREQ(p1_++, p2_++);
|
|
|
|
}
|
|
|
|
|
|
|
|
// This helper function is needed by the FailedASSERT_NE test below.
|
|
|
|
static void CompareAndIncrementInts() {
|
|
|
|
ASSERT_NE(a_++, b_++);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const char* const s1_;
|
|
|
|
static const char* const s2_;
|
|
|
|
static const char* p1_;
|
|
|
|
static const char* p2_;
|
|
|
|
|
|
|
|
static int a_;
|
|
|
|
static int b_;
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* const SingleEvaluationTest::s1_ = "01234";
|
|
|
|
const char* const SingleEvaluationTest::s2_ = "abcde";
|
|
|
|
const char* SingleEvaluationTest::p1_;
|
|
|
|
const char* SingleEvaluationTest::p2_;
|
|
|
|
int SingleEvaluationTest::a_;
|
|
|
|
int SingleEvaluationTest::b_;
|
|
|
|
|
|
|
|
// Tests that when ASSERT_STREQ fails, it evaluates its arguments
|
|
|
|
// exactly once.
|
|
|
|
TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
|
|
|
|
EXPECT_FATAL_FAILURE(CompareAndIncrementCharPtrs(),
|
|
|
|
"p2_++");
|
|
|
|
EXPECT_EQ(s1_ + 1, p1_);
|
|
|
|
EXPECT_EQ(s2_ + 1, p2_);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that string assertion arguments are evaluated exactly once.
|
|
|
|
TEST_F(SingleEvaluationTest, ASSERT_STR) {
|
|
|
|
// successful EXPECT_STRNE
|
|
|
|
EXPECT_STRNE(p1_++, p2_++);
|
|
|
|
EXPECT_EQ(s1_ + 1, p1_);
|
|
|
|
EXPECT_EQ(s2_ + 1, p2_);
|
|
|
|
|
|
|
|
// failed EXPECT_STRCASEEQ
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
|
|
|
|
"ignoring case");
|
|
|
|
EXPECT_EQ(s1_ + 2, p1_);
|
|
|
|
EXPECT_EQ(s2_ + 2, p2_);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that when ASSERT_NE fails, it evaluates its arguments exactly
|
|
|
|
// once.
|
|
|
|
TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
|
|
|
|
EXPECT_FATAL_FAILURE(CompareAndIncrementInts(), "(a_++) != (b_++)");
|
|
|
|
EXPECT_EQ(1, a_);
|
|
|
|
EXPECT_EQ(1, b_);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that assertion arguments are evaluated exactly once.
|
|
|
|
TEST_F(SingleEvaluationTest, OtherCases) {
|
|
|
|
// successful EXPECT_TRUE
|
|
|
|
EXPECT_TRUE(0 == a_++); // NOLINT
|
|
|
|
EXPECT_EQ(1, a_);
|
|
|
|
|
|
|
|
// failed EXPECT_TRUE
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
|
|
|
|
EXPECT_EQ(2, a_);
|
|
|
|
|
|
|
|
// successful EXPECT_GT
|
|
|
|
EXPECT_GT(a_++, b_++);
|
|
|
|
EXPECT_EQ(3, a_);
|
|
|
|
EXPECT_EQ(1, b_);
|
|
|
|
|
|
|
|
// failed EXPECT_LT
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
|
|
|
|
EXPECT_EQ(4, a_);
|
|
|
|
EXPECT_EQ(2, b_);
|
|
|
|
|
|
|
|
// successful ASSERT_TRUE
|
|
|
|
ASSERT_TRUE(0 < a_++); // NOLINT
|
|
|
|
EXPECT_EQ(5, a_);
|
|
|
|
|
|
|
|
// successful ASSERT_GT
|
|
|
|
ASSERT_GT(a_++, b_++);
|
|
|
|
EXPECT_EQ(6, a_);
|
|
|
|
EXPECT_EQ(3, b_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Tests non-string assertions.
|
|
|
|
|
|
|
|
// Tests EqFailure(), used for implementing *EQ* assertions.
|
|
|
|
TEST(AssertionTest, EqFailure) {
|
|
|
|
const String foo_val("5"), bar_val("6");
|
|
|
|
const String msg1(
|
|
|
|
EqFailure("foo", "bar", foo_val, bar_val, false)
|
|
|
|
.failure_message());
|
|
|
|
EXPECT_STREQ(
|
|
|
|
"Value of: bar\n"
|
|
|
|
" Actual: 6\n"
|
|
|
|
"Expected: foo\n"
|
|
|
|
"Which is: 5",
|
|
|
|
msg1.c_str());
|
|
|
|
|
|
|
|
const String msg2(
|
|
|
|
EqFailure("foo", "6", foo_val, bar_val, false)
|
|
|
|
.failure_message());
|
|
|
|
EXPECT_STREQ(
|
|
|
|
"Value of: 6\n"
|
|
|
|
"Expected: foo\n"
|
|
|
|
"Which is: 5",
|
|
|
|
msg2.c_str());
|
|
|
|
|
|
|
|
const String msg3(
|
|
|
|
EqFailure("5", "bar", foo_val, bar_val, false)
|
|
|
|
.failure_message());
|
|
|
|
EXPECT_STREQ(
|
|
|
|
"Value of: bar\n"
|
|
|
|
" Actual: 6\n"
|
|
|
|
"Expected: 5",
|
|
|
|
msg3.c_str());
|
|
|
|
|
|
|
|
const String msg4(
|
|
|
|
EqFailure("5", "6", foo_val, bar_val, false).failure_message());
|
|
|
|
EXPECT_STREQ(
|
|
|
|
"Value of: 6\n"
|
|
|
|
"Expected: 5",
|
|
|
|
msg4.c_str());
|
|
|
|
|
|
|
|
const String msg5(
|
|
|
|
EqFailure("foo", "bar",
|
|
|
|
String("\"x\""), String("\"y\""),
|
|
|
|
true).failure_message());
|
|
|
|
EXPECT_STREQ(
|
|
|
|
"Value of: bar\n"
|
|
|
|
" Actual: \"y\"\n"
|
|
|
|
"Expected: foo (ignoring case)\n"
|
|
|
|
"Which is: \"x\"",
|
|
|
|
msg5.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests AppendUserMessage(), used for implementing the *EQ* macros.
|
|
|
|
TEST(AssertionTest, AppendUserMessage) {
|
|
|
|
const String foo("foo");
|
|
|
|
|
2008-08-06 21:43:15 +00:00
|
|
|
Message msg;
|
2008-07-03 22:38:12 +00:00
|
|
|
EXPECT_STREQ("foo",
|
|
|
|
AppendUserMessage(foo, msg).c_str());
|
|
|
|
|
|
|
|
msg << "bar";
|
|
|
|
EXPECT_STREQ("foo\nbar",
|
|
|
|
AppendUserMessage(foo, msg).c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_TRUE.
|
|
|
|
TEST(AssertionTest, ASSERT_TRUE) {
|
|
|
|
ASSERT_TRUE(2 > 1); // NOLINT
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
|
|
|
|
"2 < 1");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_FALSE.
|
|
|
|
TEST(AssertionTest, ASSERT_FALSE) {
|
|
|
|
ASSERT_FALSE(2 < 1); // NOLINT
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
|
|
|
|
"Value of: 2 > 1\n"
|
|
|
|
" Actual: true\n"
|
|
|
|
"Expected: false");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests using ASSERT_EQ on double values. The purpose is to make
|
|
|
|
// sure that the specialization we did for integer and anonymous enums
|
|
|
|
// isn't used for double arguments.
|
|
|
|
TEST(ExpectTest, ASSERT_EQ_Double) {
|
|
|
|
// A success.
|
|
|
|
ASSERT_EQ(5.6, 5.6);
|
|
|
|
|
|
|
|
// A failure.
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
|
|
|
|
"5.1");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_EQ.
|
|
|
|
TEST(AssertionTest, ASSERT_EQ) {
|
|
|
|
ASSERT_EQ(5, 2 + 3);
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
|
|
|
|
"Value of: 2*3\n"
|
|
|
|
" Actual: 6\n"
|
|
|
|
"Expected: 5");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_EQ(NULL, pointer).
|
|
|
|
#ifndef __SYMBIAN32__
|
|
|
|
// The NULL-detection template magic fails to compile with
|
|
|
|
// the Nokia compiler and crashes the ARM compiler, hence
|
|
|
|
// not testing on Symbian.
|
|
|
|
TEST(AssertionTest, ASSERT_EQ_NULL) {
|
|
|
|
// A success.
|
|
|
|
const char* p = NULL;
|
|
|
|
ASSERT_EQ(NULL, p);
|
|
|
|
|
|
|
|
// A failure.
|
|
|
|
static int n = 0;
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
|
|
|
|
"Value of: &n\n");
|
|
|
|
}
|
|
|
|
#endif // __SYMBIAN32__
|
|
|
|
|
|
|
|
// Tests ASSERT_EQ(0, non_pointer). Since the literal 0 can be
|
|
|
|
// treated as a null pointer by the compiler, we need to make sure
|
|
|
|
// that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
|
|
|
|
// ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
|
|
|
|
TEST(ExpectTest, ASSERT_EQ_0) {
|
|
|
|
int n = 0;
|
|
|
|
|
|
|
|
// A success.
|
|
|
|
ASSERT_EQ(0, n);
|
|
|
|
|
|
|
|
// A failure.
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
|
|
|
|
"Expected: 0");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_NE.
|
|
|
|
TEST(AssertionTest, ASSERT_NE) {
|
|
|
|
ASSERT_NE(6, 7);
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
|
|
|
|
"Expected: ('a') != ('a'), "
|
|
|
|
"actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_LE.
|
|
|
|
TEST(AssertionTest, ASSERT_LE) {
|
|
|
|
ASSERT_LE(2, 3);
|
|
|
|
ASSERT_LE(2, 2);
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
|
|
|
|
"Expected: (2) <= (0), actual: 2 vs 0");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_LT.
|
|
|
|
TEST(AssertionTest, ASSERT_LT) {
|
|
|
|
ASSERT_LT(2, 3);
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
|
|
|
|
"Expected: (2) < (2), actual: 2 vs 2");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_GE.
|
|
|
|
TEST(AssertionTest, ASSERT_GE) {
|
|
|
|
ASSERT_GE(2, 1);
|
|
|
|
ASSERT_GE(2, 2);
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
|
|
|
|
"Expected: (2) >= (3), actual: 2 vs 3");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ASSERT_GT.
|
|
|
|
TEST(AssertionTest, ASSERT_GT) {
|
|
|
|
ASSERT_GT(2, 1);
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
|
|
|
|
"Expected: (2) > (2), actual: 2 vs 2");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Makes sure we deal with the precedence of <<. This test should
|
|
|
|
// compile.
|
|
|
|
TEST(AssertionTest, AssertPrecedence) {
|
|
|
|
ASSERT_EQ(1 < 2, true);
|
|
|
|
ASSERT_EQ(true && false, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
// A subroutine used by the following test.
|
|
|
|
void TestEq1(int x) {
|
|
|
|
ASSERT_EQ(1, x);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests calling a test subroutine that's not part of a fixture.
|
|
|
|
TEST(AssertionTest, NonFixtureSubroutine) {
|
|
|
|
EXPECT_FATAL_FAILURE(TestEq1(2),
|
|
|
|
"Value of: x");
|
|
|
|
}
|
|
|
|
|
|
|
|
// An uncopyable class.
|
|
|
|
class Uncopyable {
|
|
|
|
public:
|
|
|
|
explicit Uncopyable(int value) : value_(value) {}
|
|
|
|
|
|
|
|
int value() const { return value_; }
|
|
|
|
bool operator==(const Uncopyable& rhs) const {
|
|
|
|
return value() == rhs.value();
|
|
|
|
}
|
|
|
|
private:
|
|
|
|
// This constructor deliberately has no implementation, as we don't
|
|
|
|
// want this class to be copyable.
|
|
|
|
Uncopyable(const Uncopyable&); // NOLINT
|
|
|
|
|
|
|
|
int value_;
|
|
|
|
};
|
|
|
|
|
|
|
|
::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
|
|
|
|
return os << value.value();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool IsPositiveUncopyable(const Uncopyable& x) {
|
|
|
|
return x.value() > 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// A subroutine used by the following test.
|
|
|
|
void TestAssertNonPositive() {
|
|
|
|
Uncopyable y(-1);
|
|
|
|
ASSERT_PRED1(IsPositiveUncopyable, y);
|
|
|
|
}
|
|
|
|
// A subroutine used by the following test.
|
|
|
|
void TestAssertEqualsUncopyable() {
|
|
|
|
Uncopyable x(5);
|
|
|
|
Uncopyable y(-1);
|
|
|
|
ASSERT_EQ(x, y);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that uncopyable objects can be used in assertions.
|
|
|
|
TEST(AssertionTest, AssertWorksWithUncopyableObject) {
|
|
|
|
Uncopyable x(5);
|
|
|
|
ASSERT_PRED1(IsPositiveUncopyable, x);
|
|
|
|
ASSERT_EQ(x, x);
|
|
|
|
EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
|
|
|
|
"IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
|
|
|
|
EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
|
|
|
|
"Value of: y\n Actual: -1\nExpected: x\nWhich is: 5");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that uncopyable objects can be used in expects.
|
|
|
|
TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
|
|
|
|
Uncopyable x(5);
|
|
|
|
EXPECT_PRED1(IsPositiveUncopyable, x);
|
|
|
|
Uncopyable y(-1);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
|
|
|
|
"IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
|
|
|
|
EXPECT_EQ(x, x);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
|
|
|
|
"Value of: y\n Actual: -1\nExpected: x\nWhich is: 5");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// The version of gcc used in XCode 2.2 has a bug and doesn't allow
|
|
|
|
// anonymous enums in assertions. Therefore the following test is
|
|
|
|
// done only on Linux and Windows.
|
|
|
|
#if defined(GTEST_OS_LINUX) || defined(GTEST_OS_WINDOWS)
|
|
|
|
|
|
|
|
// Tests using assertions with anonymous enums.
|
|
|
|
enum {
|
|
|
|
CASE_A = -1,
|
|
|
|
#ifdef GTEST_OS_LINUX
|
|
|
|
// We want to test the case where the size of the anonymous enum is
|
|
|
|
// larger than sizeof(int), to make sure our implementation of the
|
|
|
|
// assertions doesn't truncate the enums. However, MSVC
|
|
|
|
// (incorrectly) doesn't allow an enum value to exceed the range of
|
|
|
|
// an int, so this has to be conditionally compiled.
|
|
|
|
//
|
|
|
|
// On Linux, CASE_B and CASE_A have the same value when truncated to
|
|
|
|
// int size. We want to test whether this will confuse the
|
|
|
|
// assertions.
|
2008-08-06 21:43:15 +00:00
|
|
|
CASE_B = testing::internal::kMaxBiggestInt,
|
2008-07-03 22:38:12 +00:00
|
|
|
#else
|
|
|
|
CASE_B = INT_MAX,
|
|
|
|
#endif // GTEST_OS_LINUX
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(AssertionTest, AnonymousEnum) {
|
|
|
|
#ifdef GTEST_OS_LINUX
|
|
|
|
EXPECT_EQ(static_cast<int>(CASE_A), static_cast<int>(CASE_B));
|
|
|
|
#endif // GTEST_OS_LINUX
|
|
|
|
|
|
|
|
EXPECT_EQ(CASE_A, CASE_A);
|
|
|
|
EXPECT_NE(CASE_A, CASE_B);
|
|
|
|
EXPECT_LT(CASE_A, CASE_B);
|
|
|
|
EXPECT_LE(CASE_A, CASE_B);
|
|
|
|
EXPECT_GT(CASE_B, CASE_A);
|
|
|
|
EXPECT_GE(CASE_A, CASE_A);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_GE(CASE_A, CASE_B),
|
|
|
|
"(CASE_A) >= (CASE_B)");
|
|
|
|
|
|
|
|
ASSERT_EQ(CASE_A, CASE_A);
|
|
|
|
ASSERT_NE(CASE_A, CASE_B);
|
|
|
|
ASSERT_LT(CASE_A, CASE_B);
|
|
|
|
ASSERT_LE(CASE_A, CASE_B);
|
|
|
|
ASSERT_GT(CASE_B, CASE_A);
|
|
|
|
ASSERT_GE(CASE_A, CASE_A);
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_EQ(CASE_A, CASE_B),
|
|
|
|
"Value of: CASE_B");
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // defined(GTEST_OS_LINUX) || defined(GTEST_OS_WINDOWS)
|
|
|
|
|
|
|
|
#if defined(GTEST_OS_WINDOWS)
|
|
|
|
|
|
|
|
static HRESULT UnexpectedHRESULTFailure() {
|
|
|
|
return E_UNEXPECTED;
|
|
|
|
}
|
|
|
|
|
|
|
|
static HRESULT OkHRESULTSuccess() {
|
|
|
|
return S_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
static HRESULT FalseHRESULTSuccess() {
|
|
|
|
return S_FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
// HRESULT assertion tests test both zero and non-zero
|
|
|
|
// success codes as well as failure message for each.
|
|
|
|
//
|
|
|
|
// Windows CE doesn't support message texts.
|
|
|
|
TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
|
|
|
|
EXPECT_HRESULT_SUCCEEDED(S_OK);
|
|
|
|
EXPECT_HRESULT_SUCCEEDED(S_FALSE);
|
|
|
|
|
|
|
|
#ifdef _WIN32_WCE
|
|
|
|
const char* expected =
|
|
|
|
"Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
|
|
|
|
" Actual: 0x8000FFFF";
|
|
|
|
#else // Windows proper
|
|
|
|
const char* expected =
|
|
|
|
"Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
|
|
|
|
" Actual: 0x8000FFFF Catastrophic failure";
|
|
|
|
#endif // _WIN32_WCE
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
|
|
|
|
expected);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
|
|
|
|
ASSERT_HRESULT_SUCCEEDED(S_OK);
|
|
|
|
ASSERT_HRESULT_SUCCEEDED(S_FALSE);
|
|
|
|
|
|
|
|
#ifdef _WIN32_WCE
|
|
|
|
const char* expected =
|
|
|
|
"Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
|
|
|
|
" Actual: 0x8000FFFF";
|
|
|
|
#else // Windows proper
|
|
|
|
const char* expected =
|
|
|
|
"Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
|
|
|
|
" Actual: 0x8000FFFF Catastrophic failure";
|
|
|
|
#endif // _WIN32_WCE
|
|
|
|
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
|
|
|
|
expected);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
|
|
|
|
EXPECT_HRESULT_FAILED(E_UNEXPECTED);
|
|
|
|
|
|
|
|
#ifdef _WIN32_WCE
|
|
|
|
const char* expected_success =
|
|
|
|
"Expected: (OkHRESULTSuccess()) fails.\n"
|
|
|
|
" Actual: 0x00000000";
|
|
|
|
const char* expected_incorrect_function =
|
|
|
|
"Expected: (FalseHRESULTSuccess()) fails.\n"
|
|
|
|
" Actual: 0x00000001";
|
|
|
|
#else // Windows proper
|
|
|
|
const char* expected_success =
|
|
|
|
"Expected: (OkHRESULTSuccess()) fails.\n"
|
|
|
|
" Actual: 0x00000000 The operation completed successfully";
|
|
|
|
const char* expected_incorrect_function =
|
|
|
|
"Expected: (FalseHRESULTSuccess()) fails.\n"
|
|
|
|
" Actual: 0x00000001 Incorrect function.";
|
|
|
|
#endif // _WIN32_WCE
|
|
|
|
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
|
|
|
|
expected_success);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
|
|
|
|
expected_incorrect_function);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
|
|
|
|
ASSERT_HRESULT_FAILED(E_UNEXPECTED);
|
|
|
|
|
|
|
|
#ifdef _WIN32_WCE
|
|
|
|
const char* expected_success =
|
|
|
|
"Expected: (OkHRESULTSuccess()) fails.\n"
|
|
|
|
" Actual: 0x00000000";
|
|
|
|
const char* expected_incorrect_function =
|
|
|
|
"Expected: (FalseHRESULTSuccess()) fails.\n"
|
|
|
|
" Actual: 0x00000001";
|
|
|
|
#else // Windows proper
|
|
|
|
const char* expected_success =
|
|
|
|
"Expected: (OkHRESULTSuccess()) fails.\n"
|
|
|
|
" Actual: 0x00000000 The operation completed successfully";
|
|
|
|
const char* expected_incorrect_function =
|
|
|
|
"Expected: (FalseHRESULTSuccess()) fails.\n"
|
|
|
|
" Actual: 0x00000001 Incorrect function.";
|
|
|
|
#endif // _WIN32_WCE
|
|
|
|
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
|
|
|
|
expected_success);
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
|
|
|
|
expected_incorrect_function);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that streaming to the HRESULT macros works.
|
|
|
|
TEST(HRESULTAssertionTest, Streaming) {
|
|
|
|
EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
|
|
|
|
ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
|
|
|
|
EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
|
|
|
|
ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
|
|
|
|
|
|
|
|
EXPECT_NONFATAL_FAILURE(
|
|
|
|
EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
|
|
|
|
EXPECT_FATAL_FAILURE(
|
|
|
|
ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
|
|
|
|
EXPECT_NONFATAL_FAILURE(
|
|
|
|
EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
|
|
|
|
EXPECT_FATAL_FAILURE(
|
|
|
|
ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // defined(GTEST_OS_WINDOWS)
|
|
|
|
|
|
|
|
// Tests that the assertion macros behave like single statements.
|
|
|
|
TEST(AssertionSyntaxTest, BehavesLikeSingleStatement) {
|
|
|
|
if (false)
|
|
|
|
ASSERT_TRUE(false) << "This should never be executed; "
|
|
|
|
"It's a compilation test only.";
|
|
|
|
|
|
|
|
if (true)
|
|
|
|
EXPECT_FALSE(false);
|
|
|
|
else
|
|
|
|
;
|
|
|
|
|
|
|
|
if (false)
|
|
|
|
ASSERT_LT(1, 3);
|
|
|
|
|
|
|
|
if (false)
|
|
|
|
;
|
|
|
|
else
|
|
|
|
EXPECT_GT(3, 2) << "";
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that the assertion macros work well with switch statements.
|
|
|
|
TEST(AssertionSyntaxTest, WorksWithSwitch) {
|
|
|
|
switch (0) {
|
|
|
|
case 1:
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
ASSERT_TRUE(true);
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (0)
|
|
|
|
case 0:
|
|
|
|
EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
|
|
|
|
|
|
|
|
// Binary assertions are implemented using a different code path
|
|
|
|
// than the Boolean assertions. Hence we test them separately.
|
|
|
|
switch (0) {
|
|
|
|
case 1:
|
|
|
|
default:
|
|
|
|
ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (0)
|
|
|
|
case 0:
|
|
|
|
EXPECT_NE(1, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
// Returns the number of successful parts in the current test.
|
|
|
|
static size_t GetSuccessfulPartCount() {
|
|
|
|
return UnitTest::GetInstance()->impl()->current_test_result()->
|
|
|
|
successful_part_count();
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace testing {
|
|
|
|
|
|
|
|
// Tests that Google Test tracks SUCCEED*.
|
|
|
|
TEST(SuccessfulAssertionTest, SUCCEED) {
|
|
|
|
SUCCEED();
|
|
|
|
SUCCEED() << "OK";
|
|
|
|
EXPECT_EQ(2u, GetSuccessfulPartCount());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that Google Test doesn't track successful EXPECT_*.
|
|
|
|
TEST(SuccessfulAssertionTest, EXPECT) {
|
|
|
|
EXPECT_TRUE(true);
|
|
|
|
EXPECT_EQ(0u, GetSuccessfulPartCount());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that Google Test doesn't track successful EXPECT_STR*.
|
|
|
|
TEST(SuccessfulAssertionTest, EXPECT_STR) {
|
|
|
|
EXPECT_STREQ("", "");
|
|
|
|
EXPECT_EQ(0u, GetSuccessfulPartCount());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that Google Test doesn't track successful ASSERT_*.
|
|
|
|
TEST(SuccessfulAssertionTest, ASSERT) {
|
|
|
|
ASSERT_TRUE(true);
|
|
|
|
EXPECT_EQ(0u, GetSuccessfulPartCount());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that Google Test doesn't track successful ASSERT_STR*.
|
|
|
|
TEST(SuccessfulAssertionTest, ASSERT_STR) {
|
|
|
|
ASSERT_STREQ("", "");
|
|
|
|
EXPECT_EQ(0u, GetSuccessfulPartCount());
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace testing
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
// Tests EXPECT_TRUE.
|
|
|
|
TEST(ExpectTest, EXPECT_TRUE) {
|
|
|
|
EXPECT_TRUE(2 > 1); // NOLINT
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
|
|
|
|
"Value of: 2 < 1\n"
|
|
|
|
" Actual: false\n"
|
|
|
|
"Expected: true");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
|
|
|
|
"2 > 3");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests EXPECT_FALSE.
|
|
|
|
TEST(ExpectTest, EXPECT_FALSE) {
|
|
|
|
EXPECT_FALSE(2 < 1); // NOLINT
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
|
|
|
|
"Value of: 2 > 1\n"
|
|
|
|
" Actual: true\n"
|
|
|
|
"Expected: false");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
|
|
|
|
"2 < 3");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests EXPECT_EQ.
|
|
|
|
TEST(ExpectTest, EXPECT_EQ) {
|
|
|
|
EXPECT_EQ(5, 2 + 3);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
|
|
|
|
"Value of: 2*3\n"
|
|
|
|
" Actual: 6\n"
|
|
|
|
"Expected: 5");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
|
|
|
|
"2 - 3");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests using EXPECT_EQ on double values. The purpose is to make
|
|
|
|
// sure that the specialization we did for integer and anonymous enums
|
|
|
|
// isn't used for double arguments.
|
|
|
|
TEST(ExpectTest, EXPECT_EQ_Double) {
|
|
|
|
// A success.
|
|
|
|
EXPECT_EQ(5.6, 5.6);
|
|
|
|
|
|
|
|
// A failure.
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
|
|
|
|
"5.1");
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef __SYMBIAN32__
|
|
|
|
// Tests EXPECT_EQ(NULL, pointer).
|
|
|
|
TEST(ExpectTest, EXPECT_EQ_NULL) {
|
|
|
|
// A success.
|
|
|
|
const char* p = NULL;
|
|
|
|
EXPECT_EQ(NULL, p);
|
|
|
|
|
|
|
|
// A failure.
|
|
|
|
int n = 0;
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
|
|
|
|
"Value of: &n\n");
|
|
|
|
}
|
|
|
|
#endif // __SYMBIAN32__
|
|
|
|
|
|
|
|
// Tests EXPECT_EQ(0, non_pointer). Since the literal 0 can be
|
|
|
|
// treated as a null pointer by the compiler, we need to make sure
|
|
|
|
// that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
|
|
|
|
// EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
|
|
|
|
TEST(ExpectTest, EXPECT_EQ_0) {
|
|
|
|
int n = 0;
|
|
|
|
|
|
|
|
// A success.
|
|
|
|
EXPECT_EQ(0, n);
|
|
|
|
|
|
|
|
// A failure.
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
|
|
|
|
"Expected: 0");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests EXPECT_NE.
|
|
|
|
TEST(ExpectTest, EXPECT_NE) {
|
|
|
|
EXPECT_NE(6, 7);
|
|
|
|
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
|
|
|
|
"Expected: ('a') != ('a'), "
|
|
|
|
"actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
|
|
|
|
"2");
|
|
|
|
char* const p0 = NULL;
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
|
|
|
|
"p0");
|
|
|
|
// Only way to get the Nokia compiler to compile the cast
|
|
|
|
// is to have a separate void* variable first. Putting
|
|
|
|
// the two casts on the same line doesn't work, neither does
|
|
|
|
// a direct C-style to char*.
|
|
|
|
void* pv1 = (void*)0x1234; // NOLINT
|
|
|
|
char* const p1 = reinterpret_cast<char*>(pv1);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
|
|
|
|
"p1");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests EXPECT_LE.
|
|
|
|
TEST(ExpectTest, EXPECT_LE) {
|
|
|
|
EXPECT_LE(2, 3);
|
|
|
|
EXPECT_LE(2, 2);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
|
|
|
|
"Expected: (2) <= (0), actual: 2 vs 0");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
|
|
|
|
"(1.1) <= (0.9)");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests EXPECT_LT.
|
|
|
|
TEST(ExpectTest, EXPECT_LT) {
|
|
|
|
EXPECT_LT(2, 3);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
|
|
|
|
"Expected: (2) < (2), actual: 2 vs 2");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
|
|
|
|
"(2) < (1)");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests EXPECT_GE.
|
|
|
|
TEST(ExpectTest, EXPECT_GE) {
|
|
|
|
EXPECT_GE(2, 1);
|
|
|
|
EXPECT_GE(2, 2);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
|
|
|
|
"Expected: (2) >= (3), actual: 2 vs 3");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
|
|
|
|
"(0.9) >= (1.1)");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests EXPECT_GT.
|
|
|
|
TEST(ExpectTest, EXPECT_GT) {
|
|
|
|
EXPECT_GT(2, 1);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
|
|
|
|
"Expected: (2) > (2), actual: 2 vs 2");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
|
|
|
|
"(2) > (3)");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make sure we deal with the precedence of <<.
|
|
|
|
TEST(ExpectTest, ExpectPrecedence) {
|
|
|
|
EXPECT_EQ(1 < 2, true);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
|
|
|
|
"Value of: true && false");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Tests the StreamableToString() function.
|
|
|
|
|
|
|
|
// Tests using StreamableToString() on a scalar.
|
|
|
|
TEST(StreamableToStringTest, Scalar) {
|
|
|
|
EXPECT_STREQ("5", StreamableToString(5).c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests using StreamableToString() on a non-char pointer.
|
|
|
|
TEST(StreamableToStringTest, Pointer) {
|
|
|
|
int n = 0;
|
|
|
|
int* p = &n;
|
|
|
|
EXPECT_STRNE("(null)", StreamableToString(p).c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests using StreamableToString() on a NULL non-char pointer.
|
|
|
|
TEST(StreamableToStringTest, NullPointer) {
|
|
|
|
int* p = NULL;
|
|
|
|
EXPECT_STREQ("(null)", StreamableToString(p).c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests using StreamableToString() on a C string.
|
|
|
|
TEST(StreamableToStringTest, CString) {
|
|
|
|
EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests using StreamableToString() on a NULL C string.
|
|
|
|
TEST(StreamableToStringTest, NullCString) {
|
|
|
|
char* p = NULL;
|
|
|
|
EXPECT_STREQ("(null)", StreamableToString(p).c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests using streamable values as assertion messages.
|
|
|
|
|
|
|
|
#if GTEST_HAS_STD_STRING
|
|
|
|
// Tests using std::string as an assertion message.
|
|
|
|
TEST(StreamableTest, string) {
|
|
|
|
static const std::string str(
|
|
|
|
"This failure message is a std::string, and is expected.");
|
|
|
|
EXPECT_FATAL_FAILURE(FAIL() << str,
|
|
|
|
str.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that we can output strings containing embedded NULs.
|
|
|
|
// Limited to Linux because we can only do this with std::string's.
|
|
|
|
TEST(StreamableTest, stringWithEmbeddedNUL) {
|
|
|
|
static const char char_array_with_nul[] =
|
|
|
|
"Here's a NUL\0 and some more string";
|
|
|
|
static const std::string string_with_nul(char_array_with_nul,
|
|
|
|
sizeof(char_array_with_nul)
|
|
|
|
- 1); // drops the trailing NUL
|
|
|
|
EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
|
|
|
|
"Here's a NUL\\0 and some more string");
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // GTEST_HAS_STD_STRING
|
|
|
|
|
|
|
|
// Tests that we can output a NUL char.
|
|
|
|
TEST(StreamableTest, NULChar) {
|
|
|
|
EXPECT_FATAL_FAILURE({ // NOLINT
|
|
|
|
FAIL() << "A NUL" << '\0' << " and some more string";
|
|
|
|
}, "A NUL\\0 and some more string");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests using int as an assertion message.
|
|
|
|
TEST(StreamableTest, int) {
|
|
|
|
EXPECT_FATAL_FAILURE(FAIL() << 900913,
|
|
|
|
"900913");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests using NULL char pointer as an assertion message.
|
|
|
|
//
|
|
|
|
// In MSVC, streaming a NULL char * causes access violation. Google Test
|
|
|
|
// implemented a workaround (substituting "(null)" for NULL). This
|
|
|
|
// tests whether the workaround works.
|
|
|
|
TEST(StreamableTest, NullCharPtr) {
|
|
|
|
EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
|
|
|
|
"(null)");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that basic IO manipulators (endl, ends, and flush) can be
|
|
|
|
// streamed to testing::Message.
|
|
|
|
TEST(StreamableTest, BasicIoManip) {
|
|
|
|
EXPECT_FATAL_FAILURE({ // NOLINT
|
|
|
|
FAIL() << "Line 1." << std::endl
|
|
|
|
<< "A NUL char " << std::ends << std::flush << " in line 2.";
|
|
|
|
}, "Line 1.\nA NUL char \\0 in line 2.");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests the macros that haven't been covered so far.
|
|
|
|
|
|
|
|
void AddFailureHelper(bool* aborted) {
|
|
|
|
*aborted = true;
|
|
|
|
ADD_FAILURE() << "Failure";
|
|
|
|
*aborted = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests ADD_FAILURE.
|
|
|
|
TEST(MacroTest, ADD_FAILURE) {
|
|
|
|
bool aborted = true;
|
|
|
|
EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
|
|
|
|
"Failure");
|
|
|
|
EXPECT_FALSE(aborted);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests FAIL.
|
|
|
|
TEST(MacroTest, FAIL) {
|
|
|
|
EXPECT_FATAL_FAILURE(FAIL(),
|
|
|
|
"Failed");
|
|
|
|
EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
|
|
|
|
"Intentional failure.");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests SUCCEED
|
|
|
|
TEST(MacroTest, SUCCEED) {
|
|
|
|
SUCCEED();
|
|
|
|
SUCCEED() << "Explicit success.";
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Tests for EXPECT_EQ() and ASSERT_EQ().
|
|
|
|
//
|
|
|
|
// These tests fail *intentionally*, s.t. the failure messages can be
|
|
|
|
// generated and tested.
|
|
|
|
//
|
|
|
|
// We have different tests for different argument types.
|
|
|
|
|
|
|
|
// Tests using bool values in {EXPECT|ASSERT}_EQ.
|
|
|
|
TEST(EqAssertionTest, Bool) {
|
|
|
|
EXPECT_EQ(true, true);
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_EQ(false, true),
|
|
|
|
"Value of: true");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests using int values in {EXPECT|ASSERT}_EQ.
|
|
|
|
TEST(EqAssertionTest, Int) {
|
|
|
|
ASSERT_EQ(32, 32);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
|
|
|
|
"33");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests using time_t values in {EXPECT|ASSERT}_EQ.
|
|
|
|
TEST(EqAssertionTest, Time_T) {
|
|
|
|
EXPECT_EQ(static_cast<time_t>(0),
|
|
|
|
static_cast<time_t>(0));
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
|
|
|
|
static_cast<time_t>(1234)),
|
|
|
|
"1234");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests using char values in {EXPECT|ASSERT}_EQ.
|
|
|
|
TEST(EqAssertionTest, Char) {
|
|
|
|
ASSERT_EQ('z', 'z');
|
|
|
|
const char ch = 'b';
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
|
|
|
|
"ch");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
|
|
|
|
"ch");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
|
|
|
|
TEST(EqAssertionTest, WideChar) {
|
|
|
|
EXPECT_EQ(L'b', L'b');
|
|
|
|
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
|
|
|
|
"Value of: L'x'\n"
|
|
|
|
" Actual: L'x' (120, 0x78)\n"
|
|
|
|
"Expected: L'\0'\n"
|
|
|
|
"Which is: L'\0' (0, 0x0)");
|
|
|
|
|
|
|
|
static wchar_t wchar;
|
|
|
|
wchar = L'b';
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
|
|
|
|
"wchar");
|
|
|
|
wchar = L'\x8119';
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_EQ(L'\x8120', wchar),
|
|
|
|
"Value of: wchar");
|
|
|
|
}
|
|
|
|
|
|
|
|
#if GTEST_HAS_STD_STRING
|
|
|
|
// Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
|
|
|
|
TEST(EqAssertionTest, StdString) {
|
|
|
|
// Compares a const char* to an std::string that has identical
|
|
|
|
// content.
|
|
|
|
ASSERT_EQ("Test", ::std::string("Test"));
|
|
|
|
|
|
|
|
// Compares two identical std::strings.
|
|
|
|
static const ::std::string str1("A * in the middle");
|
|
|
|
static const ::std::string str2(str1);
|
|
|
|
EXPECT_EQ(str1, str2);
|
|
|
|
|
|
|
|
// Compares a const char* to an std::string that has different
|
|
|
|
// content
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
|
|
|
|
"::std::string(\"test\")");
|
|
|
|
|
|
|
|
// Compares an std::string to a char* that has different content.
|
|
|
|
char* const p1 = const_cast<char*>("foo");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
|
|
|
|
"p1");
|
|
|
|
|
|
|
|
// Compares two std::strings that have different contents, one of
|
|
|
|
// which having a NUL character in the middle. This should fail.
|
|
|
|
static ::std::string str3(str1);
|
|
|
|
str3.at(2) = '\0';
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
|
|
|
|
"Value of: str3\n"
|
|
|
|
" Actual: \"A \\0 in the middle\"");
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // GTEST_HAS_STD_STRING
|
|
|
|
|
|
|
|
#if GTEST_HAS_STD_WSTRING
|
|
|
|
|
|
|
|
// Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
|
|
|
|
TEST(EqAssertionTest, StdWideString) {
|
|
|
|
// Compares an std::wstring to a const wchar_t* that has identical
|
|
|
|
// content.
|
|
|
|
EXPECT_EQ(::std::wstring(L"Test\x8119"), L"Test\x8119");
|
|
|
|
|
|
|
|
// Compares two identical std::wstrings.
|
|
|
|
const ::std::wstring wstr1(L"A * in the middle");
|
|
|
|
const ::std::wstring wstr2(wstr1);
|
|
|
|
ASSERT_EQ(wstr1, wstr2);
|
|
|
|
|
|
|
|
// Compares an std::wstring to a const wchar_t* that has different
|
|
|
|
// content.
|
|
|
|
EXPECT_NONFATAL_FAILURE({ // NOLINT
|
|
|
|
EXPECT_EQ(::std::wstring(L"Test\x8119"), L"Test\x8120");
|
|
|
|
}, "L\"Test\\x8120\"");
|
|
|
|
|
|
|
|
// Compares two std::wstrings that have different contents, one of
|
|
|
|
// which having a NUL character in the middle.
|
|
|
|
::std::wstring wstr3(wstr1);
|
|
|
|
wstr3.at(2) = L'\0';
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
|
|
|
|
"wstr3");
|
|
|
|
|
|
|
|
// Compares a wchar_t* to an std::wstring that has different
|
|
|
|
// content.
|
|
|
|
EXPECT_FATAL_FAILURE({ // NOLINT
|
|
|
|
ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
|
|
|
|
}, "");
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // GTEST_HAS_STD_WSTRING
|
|
|
|
|
|
|
|
#if GTEST_HAS_GLOBAL_STRING
|
|
|
|
// Tests using ::string values in {EXPECT|ASSERT}_EQ.
|
|
|
|
TEST(EqAssertionTest, GlobalString) {
|
|
|
|
// Compares a const char* to a ::string that has identical content.
|
|
|
|
EXPECT_EQ("Test", ::string("Test"));
|
|
|
|
|
|
|
|
// Compares two identical ::strings.
|
|
|
|
const ::string str1("A * in the middle");
|
|
|
|
const ::string str2(str1);
|
|
|
|
ASSERT_EQ(str1, str2);
|
|
|
|
|
|
|
|
// Compares a ::string to a const char* that has different content.
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
|
|
|
|
"test");
|
|
|
|
|
|
|
|
// Compares two ::strings that have different contents, one of which
|
|
|
|
// having a NUL character in the middle.
|
|
|
|
::string str3(str1);
|
|
|
|
str3.at(2) = '\0';
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
|
|
|
|
"str3");
|
|
|
|
|
|
|
|
// Compares a ::string to a char* that has different content.
|
|
|
|
EXPECT_FATAL_FAILURE({ // NOLINT
|
|
|
|
ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
|
|
|
|
}, "");
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // GTEST_HAS_GLOBAL_STRING
|
|
|
|
|
|
|
|
#if GTEST_HAS_GLOBAL_WSTRING
|
|
|
|
|
|
|
|
// Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
|
|
|
|
TEST(EqAssertionTest, GlobalWideString) {
|
|
|
|
// Compares a const wchar_t* to a ::wstring that has identical content.
|
|
|
|
ASSERT_EQ(L"Test\x8119", ::wstring(L"Test\x8119"));
|
|
|
|
|
|
|
|
// Compares two identical ::wstrings.
|
|
|
|
static const ::wstring wstr1(L"A * in the middle");
|
|
|
|
static const ::wstring wstr2(wstr1);
|
|
|
|
EXPECT_EQ(wstr1, wstr2);
|
|
|
|
|
|
|
|
// Compares a const wchar_t* to a ::wstring that has different
|
|
|
|
// content.
|
|
|
|
EXPECT_NONFATAL_FAILURE({ // NOLINT
|
|
|
|
EXPECT_EQ(L"Test\x8120", ::wstring(L"Test\x8119"));
|
|
|
|
}, "Test\\x8119");
|
|
|
|
|
|
|
|
// Compares a wchar_t* to a ::wstring that has different content.
|
|
|
|
wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
|
|
|
|
"bar");
|
|
|
|
|
|
|
|
// Compares two ::wstrings that have different contents, one of which
|
|
|
|
// having a NUL character in the middle.
|
|
|
|
static ::wstring wstr3;
|
|
|
|
wstr3 = wstr1;
|
|
|
|
wstr3.at(2) = L'\0';
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
|
|
|
|
"wstr3");
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // GTEST_HAS_GLOBAL_WSTRING
|
|
|
|
|
|
|
|
// Tests using char pointers in {EXPECT|ASSERT}_EQ.
|
|
|
|
TEST(EqAssertionTest, CharPointer) {
|
|
|
|
char* const p0 = NULL;
|
|
|
|
// Only way to get the Nokia compiler to compile the cast
|
|
|
|
// is to have a separate void* variable first. Putting
|
|
|
|
// the two casts on the same line doesn't work, neither does
|
|
|
|
// a direct C-style to char*.
|
|
|
|
void* pv1 = (void*)0x1234; // NOLINT
|
|
|
|
void* pv2 = (void*)0xABC0; // NOLINT
|
|
|
|
char* const p1 = reinterpret_cast<char*>(pv1);
|
|
|
|
char* const p2 = reinterpret_cast<char*>(pv2);
|
|
|
|
ASSERT_EQ(p1, p1);
|
|
|
|
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
|
|
|
|
"Value of: p2");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
|
|
|
|
"p2");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
|
|
|
|
reinterpret_cast<char*>(0xABC0)),
|
|
|
|
"ABC0");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
|
|
|
|
TEST(EqAssertionTest, WideCharPointer) {
|
|
|
|
wchar_t* const p0 = NULL;
|
|
|
|
// Only way to get the Nokia compiler to compile the cast
|
|
|
|
// is to have a separate void* variable first. Putting
|
|
|
|
// the two casts on the same line doesn't work, neither does
|
|
|
|
// a direct C-style to char*.
|
|
|
|
void* pv1 = (void*)0x1234; // NOLINT
|
|
|
|
void* pv2 = (void*)0xABC0; // NOLINT
|
|
|
|
wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
|
|
|
|
wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
|
|
|
|
EXPECT_EQ(p0, p0);
|
|
|
|
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
|
|
|
|
"Value of: p2");
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
|
|
|
|
"p2");
|
|
|
|
void* pv3 = (void*)0x1234; // NOLINT
|
|
|
|
void* pv4 = (void*)0xABC0; // NOLINT
|
|
|
|
const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
|
|
|
|
const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
|
|
|
|
"p4");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
|
|
|
|
TEST(EqAssertionTest, OtherPointer) {
|
|
|
|
ASSERT_EQ(static_cast<const int*>(NULL),
|
|
|
|
static_cast<const int*>(NULL));
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
|
|
|
|
reinterpret_cast<const int*>(0x1234)),
|
|
|
|
"0x1234");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests the FRIEND_TEST macro.
|
|
|
|
|
|
|
|
// This class has a private member we want to test. We will test it
|
|
|
|
// both in a TEST and in a TEST_F.
|
|
|
|
class Foo {
|
|
|
|
public:
|
|
|
|
Foo() {}
|
|
|
|
|
|
|
|
private:
|
|
|
|
int Bar() const { return 1; }
|
|
|
|
|
|
|
|
// Declares the friend tests that can access the private member
|
|
|
|
// Bar().
|
|
|
|
FRIEND_TEST(FRIEND_TEST_Test, TEST);
|
|
|
|
FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
|
|
|
|
};
|
|
|
|
|
|
|
|
// Tests that the FRIEND_TEST declaration allows a TEST to access a
|
|
|
|
// class's private members. This should compile.
|
|
|
|
TEST(FRIEND_TEST_Test, TEST) {
|
|
|
|
ASSERT_EQ(1, Foo().Bar());
|
|
|
|
}
|
|
|
|
|
|
|
|
// The fixture needed to test using FRIEND_TEST with TEST_F.
|
2008-08-06 21:43:15 +00:00
|
|
|
class FRIEND_TEST_Test2 : public Test {
|
2008-07-03 22:38:12 +00:00
|
|
|
protected:
|
|
|
|
Foo foo;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Tests that the FRIEND_TEST declaration allows a TEST_F to access a
|
|
|
|
// class's private members. This should compile.
|
|
|
|
TEST_F(FRIEND_TEST_Test2, TEST_F) {
|
|
|
|
ASSERT_EQ(1, foo.Bar());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests the life cycle of Test objects.
|
|
|
|
|
|
|
|
// The test fixture for testing the life cycle of Test objects.
|
|
|
|
//
|
|
|
|
// This class counts the number of live test objects that uses this
|
|
|
|
// fixture.
|
2008-08-06 21:43:15 +00:00
|
|
|
class TestLifeCycleTest : public Test {
|
2008-07-03 22:38:12 +00:00
|
|
|
protected:
|
|
|
|
// Constructor. Increments the number of test objects that uses
|
|
|
|
// this fixture.
|
|
|
|
TestLifeCycleTest() { count_++; }
|
|
|
|
|
|
|
|
// Destructor. Decrements the number of test objects that uses this
|
|
|
|
// fixture.
|
|
|
|
~TestLifeCycleTest() { count_--; }
|
|
|
|
|
|
|
|
// Returns the number of live test objects that uses this fixture.
|
|
|
|
int count() const { return count_; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
static int count_;
|
|
|
|
};
|
|
|
|
|
|
|
|
int TestLifeCycleTest::count_ = 0;
|
|
|
|
|
|
|
|
// Tests the life cycle of test objects.
|
|
|
|
TEST_F(TestLifeCycleTest, Test1) {
|
|
|
|
// There should be only one test object in this test case that's
|
|
|
|
// currently alive.
|
|
|
|
ASSERT_EQ(1, count());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests the life cycle of test objects.
|
|
|
|
TEST_F(TestLifeCycleTest, Test2) {
|
|
|
|
// After Test1 is done and Test2 is started, there should still be
|
|
|
|
// only one live test object, as the object for Test1 should've been
|
|
|
|
// deleted.
|
|
|
|
ASSERT_EQ(1, count());
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
// Tests streaming a user type whose definition and operator << are
|
|
|
|
// both in the global namespace.
|
|
|
|
class Base {
|
|
|
|
public:
|
|
|
|
explicit Base(int x) : x_(x) {}
|
|
|
|
int x() const { return x_; }
|
|
|
|
private:
|
|
|
|
int x_;
|
|
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& os,
|
|
|
|
const Base& val) {
|
|
|
|
return os << val.x();
|
|
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& os,
|
|
|
|
const Base* pointer) {
|
|
|
|
return os << "(" << pointer->x() << ")";
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
|
2008-08-06 21:43:15 +00:00
|
|
|
Message msg;
|
2008-07-03 22:38:12 +00:00
|
|
|
Base a(1);
|
|
|
|
|
|
|
|
msg << a << &a; // Uses ::operator<<.
|
|
|
|
EXPECT_STREQ("1(1)", msg.GetString().c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests streaming a user type whose definition and operator<< are
|
|
|
|
// both in an unnamed namespace.
|
|
|
|
namespace {
|
|
|
|
class MyTypeInUnnamedNameSpace : public Base {
|
|
|
|
public:
|
|
|
|
explicit MyTypeInUnnamedNameSpace(int x): Base(x) {}
|
|
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& os,
|
|
|
|
const MyTypeInUnnamedNameSpace& val) {
|
|
|
|
return os << val.x();
|
|
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& os,
|
|
|
|
const MyTypeInUnnamedNameSpace* pointer) {
|
|
|
|
return os << "(" << pointer->x() << ")";
|
|
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
|
2008-08-06 21:43:15 +00:00
|
|
|
Message msg;
|
2008-07-03 22:38:12 +00:00
|
|
|
MyTypeInUnnamedNameSpace a(1);
|
|
|
|
|
|
|
|
msg << a << &a; // Uses <unnamed_namespace>::operator<<.
|
|
|
|
EXPECT_STREQ("1(1)", msg.GetString().c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests streaming a user type whose definition and operator<< are
|
|
|
|
// both in a user namespace.
|
|
|
|
namespace namespace1 {
|
|
|
|
class MyTypeInNameSpace1 : public Base {
|
|
|
|
public:
|
|
|
|
explicit MyTypeInNameSpace1(int x): Base(x) {}
|
|
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& os,
|
|
|
|
const MyTypeInNameSpace1& val) {
|
|
|
|
return os << val.x();
|
|
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& os,
|
|
|
|
const MyTypeInNameSpace1* pointer) {
|
|
|
|
return os << "(" << pointer->x() << ")";
|
|
|
|
}
|
|
|
|
} // namespace namespace1
|
|
|
|
|
|
|
|
TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
|
2008-08-06 21:43:15 +00:00
|
|
|
Message msg;
|
2008-07-03 22:38:12 +00:00
|
|
|
namespace1::MyTypeInNameSpace1 a(1);
|
|
|
|
|
|
|
|
msg << a << &a; // Uses namespace1::operator<<.
|
|
|
|
EXPECT_STREQ("1(1)", msg.GetString().c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests streaming a user type whose definition is in a user namespace
|
|
|
|
// but whose operator<< is in the global namespace.
|
|
|
|
namespace namespace2 {
|
|
|
|
class MyTypeInNameSpace2 : public ::Base {
|
|
|
|
public:
|
|
|
|
explicit MyTypeInNameSpace2(int x): Base(x) {}
|
|
|
|
};
|
|
|
|
} // namespace namespace2
|
|
|
|
std::ostream& operator<<(std::ostream& os,
|
|
|
|
const namespace2::MyTypeInNameSpace2& val) {
|
|
|
|
return os << val.x();
|
|
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& os,
|
|
|
|
const namespace2::MyTypeInNameSpace2* pointer) {
|
|
|
|
return os << "(" << pointer->x() << ")";
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
|
2008-08-06 21:43:15 +00:00
|
|
|
Message msg;
|
2008-07-03 22:38:12 +00:00
|
|
|
namespace2::MyTypeInNameSpace2 a(1);
|
|
|
|
|
|
|
|
msg << a << &a; // Uses ::operator<<.
|
|
|
|
EXPECT_STREQ("1(1)", msg.GetString().c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests streaming NULL pointers to testing::Message.
|
|
|
|
TEST(MessageTest, NullPointers) {
|
2008-08-06 21:43:15 +00:00
|
|
|
Message msg;
|
2008-07-03 22:38:12 +00:00
|
|
|
char* const p1 = NULL;
|
|
|
|
unsigned char* const p2 = NULL;
|
|
|
|
int* p3 = NULL;
|
|
|
|
double* p4 = NULL;
|
|
|
|
bool* p5 = NULL;
|
2008-08-06 21:43:15 +00:00
|
|
|
Message* p6 = NULL;
|
2008-07-03 22:38:12 +00:00
|
|
|
|
|
|
|
msg << p1 << p2 << p3 << p4 << p5 << p6;
|
|
|
|
ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
|
|
|
|
msg.GetString().c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests streaming wide strings to testing::Message.
|
|
|
|
TEST(MessageTest, WideStrings) {
|
|
|
|
// Streams a NULL of type const wchar_t*.
|
|
|
|
const wchar_t* const_wstr = NULL;
|
|
|
|
EXPECT_STREQ("(null)",
|
|
|
|
(Message() << const_wstr).GetString().c_str());
|
|
|
|
|
|
|
|
// Streams a NULL of type wchar_t*.
|
|
|
|
wchar_t* wstr = NULL;
|
|
|
|
EXPECT_STREQ("(null)",
|
|
|
|
(Message() << wstr).GetString().c_str());
|
|
|
|
|
|
|
|
// Streams a non-NULL of type const wchar_t*.
|
|
|
|
const_wstr = L"abc\x8119";
|
|
|
|
EXPECT_STREQ("abc\xe8\x84\x99",
|
|
|
|
(Message() << const_wstr).GetString().c_str());
|
|
|
|
|
|
|
|
// Streams a non-NULL of type wchar_t*.
|
|
|
|
wstr = const_cast<wchar_t*>(const_wstr);
|
|
|
|
EXPECT_STREQ("abc\xe8\x84\x99",
|
|
|
|
(Message() << wstr).GetString().c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// This line tests that we can define tests in the testing namespace.
|
|
|
|
namespace testing {
|
|
|
|
|
|
|
|
// Tests the TestInfo class.
|
|
|
|
|
2008-08-06 21:43:15 +00:00
|
|
|
class TestInfoTest : public Test {
|
2008-07-03 22:38:12 +00:00
|
|
|
protected:
|
|
|
|
static TestInfo * GetTestInfo(const char* test_name) {
|
|
|
|
return UnitTest::GetInstance()->impl()->
|
|
|
|
GetTestCase("TestInfoTest", NULL, NULL)->
|
|
|
|
GetTestInfo(test_name);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const TestResult* GetTestResult(
|
2008-08-06 21:43:15 +00:00
|
|
|
const TestInfo* test_info) {
|
2008-07-03 22:38:12 +00:00
|
|
|
return test_info->result();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// Tests TestInfo::test_case_name() and TestInfo::name().
|
|
|
|
TEST_F(TestInfoTest, Names) {
|
|
|
|
TestInfo * const test_info = GetTestInfo("Names");
|
|
|
|
|
|
|
|
ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
|
|
|
|
ASSERT_STREQ("Names", test_info->name());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests TestInfo::result().
|
|
|
|
TEST_F(TestInfoTest, result) {
|
|
|
|
TestInfo * const test_info = GetTestInfo("result");
|
|
|
|
|
|
|
|
// Initially, there is no TestPartResult for this test.
|
|
|
|
ASSERT_EQ(0u, GetTestResult(test_info)->total_part_count());
|
|
|
|
|
|
|
|
// After the previous assertion, there is still none.
|
|
|
|
ASSERT_EQ(0u, GetTestResult(test_info)->total_part_count());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests setting up and tearing down a test case.
|
|
|
|
|
2008-08-06 21:43:15 +00:00
|
|
|
class SetUpTestCaseTest : public Test {
|
2008-07-03 22:38:12 +00:00
|
|
|
protected:
|
|
|
|
// This will be called once before the first test in this test case
|
|
|
|
// is run.
|
|
|
|
static void SetUpTestCase() {
|
|
|
|
printf("Setting up the test case . . .\n");
|
|
|
|
|
|
|
|
// Initializes some shared resource. In this simple example, we
|
|
|
|
// just create a C string. More complex stuff can be done if
|
|
|
|
// desired.
|
|
|
|
shared_resource_ = "123";
|
|
|
|
|
|
|
|
// Increments the number of test cases that have been set up.
|
|
|
|
counter_++;
|
|
|
|
|
|
|
|
// SetUpTestCase() should be called only once.
|
|
|
|
EXPECT_EQ(1, counter_);
|
|
|
|
}
|
|
|
|
|
|
|
|
// This will be called once after the last test in this test case is
|
|
|
|
// run.
|
|
|
|
static void TearDownTestCase() {
|
|
|
|
printf("Tearing down the test case . . .\n");
|
|
|
|
|
|
|
|
// Decrements the number of test cases that have been set up.
|
|
|
|
counter_--;
|
|
|
|
|
|
|
|
// TearDownTestCase() should be called only once.
|
|
|
|
EXPECT_EQ(0, counter_);
|
|
|
|
|
|
|
|
// Cleans up the shared resource.
|
|
|
|
shared_resource_ = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// This will be called before each test in this test case.
|
|
|
|
virtual void SetUp() {
|
|
|
|
// SetUpTestCase() should be called only once, so counter_ should
|
|
|
|
// always be 1.
|
|
|
|
EXPECT_EQ(1, counter_);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Number of test cases that have been set up.
|
|
|
|
static int counter_;
|
|
|
|
|
|
|
|
// Some resource to be shared by all tests in this test case.
|
|
|
|
static const char* shared_resource_;
|
|
|
|
};
|
|
|
|
|
|
|
|
int SetUpTestCaseTest::counter_ = 0;
|
|
|
|
const char* SetUpTestCaseTest::shared_resource_ = NULL;
|
|
|
|
|
|
|
|
// A test that uses the shared resource.
|
|
|
|
TEST_F(SetUpTestCaseTest, Test1) {
|
|
|
|
EXPECT_STRNE(NULL, shared_resource_);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Another test that uses the shared resource.
|
|
|
|
TEST_F(SetUpTestCaseTest, Test2) {
|
|
|
|
EXPECT_STREQ("123", shared_resource_);
|
|
|
|
}
|
|
|
|
|
|
|
|
// The InitGoogleTestTest test case tests testing::InitGoogleTest().
|
|
|
|
|
|
|
|
// The Flags struct stores a copy of all Google Test flags.
|
|
|
|
struct Flags {
|
|
|
|
// Constructs a Flags struct where each flag has its default value.
|
|
|
|
Flags() : break_on_failure(false),
|
|
|
|
catch_exceptions(false),
|
|
|
|
filter(""),
|
|
|
|
list_tests(false),
|
|
|
|
output(""),
|
2008-07-25 04:06:16 +00:00
|
|
|
print_time(false),
|
2008-07-03 22:38:12 +00:00
|
|
|
repeat(1) {}
|
|
|
|
|
|
|
|
// Factory methods.
|
|
|
|
|
|
|
|
// Creates a Flags struct where the gtest_break_on_failure flag has
|
|
|
|
// the given value.
|
|
|
|
static Flags BreakOnFailure(bool break_on_failure) {
|
|
|
|
Flags flags;
|
|
|
|
flags.break_on_failure = break_on_failure;
|
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Creates a Flags struct where the gtest_catch_exceptions flag has
|
|
|
|
// the given value.
|
|
|
|
static Flags CatchExceptions(bool catch_exceptions) {
|
|
|
|
Flags flags;
|
|
|
|
flags.catch_exceptions = catch_exceptions;
|
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Creates a Flags struct where the gtest_filter flag has the given
|
|
|
|
// value.
|
|
|
|
static Flags Filter(const char* filter) {
|
|
|
|
Flags flags;
|
|
|
|
flags.filter = filter;
|
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Creates a Flags struct where the gtest_list_tests flag has the
|
|
|
|
// given value.
|
|
|
|
static Flags ListTests(bool list_tests) {
|
|
|
|
Flags flags;
|
|
|
|
flags.list_tests = list_tests;
|
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Creates a Flags struct where the gtest_output flag has the given
|
|
|
|
// value.
|
|
|
|
static Flags Output(const char* output) {
|
|
|
|
Flags flags;
|
|
|
|
flags.output = output;
|
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
2008-07-25 04:06:16 +00:00
|
|
|
// Creates a Flags struct where the gtest_print_time flag has the given
|
|
|
|
// value.
|
|
|
|
static Flags PrintTime(bool print_time) {
|
|
|
|
Flags flags;
|
|
|
|
flags.print_time = print_time;
|
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
2008-07-03 22:38:12 +00:00
|
|
|
// Creates a Flags struct where the gtest_repeat flag has the given
|
|
|
|
// value.
|
|
|
|
static Flags Repeat(Int32 repeat) {
|
|
|
|
Flags flags;
|
|
|
|
flags.repeat = repeat;
|
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
// These fields store the flag values.
|
|
|
|
bool break_on_failure;
|
|
|
|
bool catch_exceptions;
|
|
|
|
const char* filter;
|
|
|
|
bool list_tests;
|
|
|
|
const char* output;
|
2008-07-25 04:06:16 +00:00
|
|
|
bool print_time;
|
2008-07-03 22:38:12 +00:00
|
|
|
Int32 repeat;
|
|
|
|
};
|
|
|
|
|
|
|
|
// Fixture for testing InitGoogleTest().
|
2008-08-06 21:43:15 +00:00
|
|
|
class InitGoogleTestTest : public Test {
|
2008-07-03 22:38:12 +00:00
|
|
|
protected:
|
|
|
|
// Clears the flags before each test.
|
|
|
|
virtual void SetUp() {
|
|
|
|
GTEST_FLAG(break_on_failure) = false;
|
|
|
|
GTEST_FLAG(catch_exceptions) = false;
|
|
|
|
GTEST_FLAG(filter) = "";
|
|
|
|
GTEST_FLAG(list_tests) = false;
|
|
|
|
GTEST_FLAG(output) = "";
|
2008-07-25 04:06:16 +00:00
|
|
|
GTEST_FLAG(print_time) = false;
|
2008-07-03 22:38:12 +00:00
|
|
|
GTEST_FLAG(repeat) = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Asserts that two narrow or wide string arrays are equal.
|
|
|
|
template <typename CharType>
|
|
|
|
static void AssertStringArrayEq(size_t size1, CharType** array1,
|
|
|
|
size_t size2, CharType** array2) {
|
|
|
|
ASSERT_EQ(size1, size2) << " Array sizes different.";
|
|
|
|
|
|
|
|
for (size_t i = 0; i != size1; i++) {
|
|
|
|
ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Verifies that the flag values match the expected values.
|
|
|
|
static void CheckFlags(const Flags& expected) {
|
|
|
|
EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
|
|
|
|
EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
|
|
|
|
EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
|
|
|
|
EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
|
|
|
|
EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
|
2008-07-25 04:06:16 +00:00
|
|
|
EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
|
2008-07-03 22:38:12 +00:00
|
|
|
EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Parses a command line (specified by argc1 and argv1), then
|
|
|
|
// verifies that the flag values are expected and that the
|
|
|
|
// recognized flags are removed from the command line.
|
|
|
|
template <typename CharType>
|
|
|
|
static void TestParsingFlags(int argc1, const CharType** argv1,
|
|
|
|
int argc2, const CharType** argv2,
|
|
|
|
const Flags& expected) {
|
|
|
|
// Parses the command line.
|
|
|
|
InitGoogleTest(&argc1, const_cast<CharType**>(argv1));
|
|
|
|
|
|
|
|
// Verifies the flag values.
|
|
|
|
CheckFlags(expected);
|
|
|
|
|
|
|
|
// Verifies that the recognized flags are removed from the command
|
|
|
|
// line.
|
|
|
|
AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
|
|
|
|
}
|
|
|
|
|
|
|
|
// This macro wraps TestParsingFlags s.t. the user doesn't need
|
|
|
|
// to specify the array sizes.
|
|
|
|
#define TEST_PARSING_FLAGS(argv1, argv2, expected) \
|
|
|
|
TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
|
|
|
|
sizeof(argv2)/sizeof(*argv2) - 1, argv2, expected)
|
|
|
|
};
|
|
|
|
|
|
|
|
// Tests parsing an empty command line.
|
|
|
|
TEST_F(InitGoogleTestTest, Empty) {
|
|
|
|
const char* argv[] = {
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing a command line that has no flag.
|
|
|
|
TEST_F(InitGoogleTestTest, NoFlag) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing a bad --gtest_filter flag.
|
|
|
|
TEST_F(InitGoogleTestTest, FilterBad) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_filter",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_filter",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::Filter(""));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing an empty --gtest_filter flag.
|
|
|
|
TEST_F(InitGoogleTestTest, FilterEmpty) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_filter=",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::Filter(""));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing a non-empty --gtest_filter flag.
|
|
|
|
TEST_F(InitGoogleTestTest, FilterNonEmpty) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_filter=abc",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::Filter("abc"));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing --gtest_break_on_failure.
|
|
|
|
TEST_F(InitGoogleTestTest, BreakOnFailureNoDef) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_break_on_failure",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::BreakOnFailure(true));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing --gtest_break_on_failure=0.
|
|
|
|
TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_break_on_failure=0",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::BreakOnFailure(false));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing --gtest_break_on_failure=f.
|
|
|
|
TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_break_on_failure=f",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::BreakOnFailure(false));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing --gtest_break_on_failure=F.
|
|
|
|
TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_break_on_failure=F",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::BreakOnFailure(false));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing a --gtest_break_on_failure flag that has a "true"
|
|
|
|
// definition.
|
|
|
|
TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_break_on_failure=1",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::BreakOnFailure(true));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing --gtest_catch_exceptions.
|
|
|
|
TEST_F(InitGoogleTestTest, CatchExceptions) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_catch_exceptions",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::CatchExceptions(true));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests having the same flag twice with different values. The
|
|
|
|
// expected behavior is that the one coming last takes precedence.
|
|
|
|
TEST_F(InitGoogleTestTest, DuplicatedFlags) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_filter=a",
|
|
|
|
"--gtest_filter=b",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::Filter("b"));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests having an unrecognized flag on the command line.
|
|
|
|
TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_break_on_failure",
|
|
|
|
"bar", // Unrecognized by Google Test.
|
|
|
|
"--gtest_filter=b",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"bar",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
Flags flags;
|
|
|
|
flags.break_on_failure = true;
|
|
|
|
flags.filter = "b";
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, flags);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests having a --gtest_list_tests flag
|
|
|
|
TEST_F(InitGoogleTestTest, ListTestsFlag) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_list_tests",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::ListTests(true));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests having a --gtest_list_tests flag with a "true" value
|
|
|
|
TEST_F(InitGoogleTestTest, ListTestsTrue) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_list_tests=1",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::ListTests(true));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests having a --gtest_list_tests flag with a "false" value
|
|
|
|
TEST_F(InitGoogleTestTest, ListTestsFalse) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_list_tests=0",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::ListTests(false));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing --gtest_list_tests=f.
|
|
|
|
TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_list_tests=f",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::ListTests(false));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing --gtest_break_on_failure=F.
|
|
|
|
TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_list_tests=F",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::ListTests(false));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing --gtest_output (invalid).
|
|
|
|
TEST_F(InitGoogleTestTest, OutputEmpty) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_output",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_output",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing --gtest_output=xml
|
|
|
|
TEST_F(InitGoogleTestTest, OutputXml) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_output=xml",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::Output("xml"));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing --gtest_output=xml:file
|
|
|
|
TEST_F(InitGoogleTestTest, OutputXmlFile) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_output=xml:file",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::Output("xml:file"));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing --gtest_output=xml:directory/path/
|
|
|
|
TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_output=xml:directory/path/",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::Output("xml:directory/path/"));
|
|
|
|
}
|
|
|
|
|
2008-07-25 04:06:16 +00:00
|
|
|
// Tests having a --gtest_print_time flag
|
|
|
|
TEST_F(InitGoogleTestTest, PrintTimeFlag) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_print_time",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::PrintTime(true));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests having a --gtest_print_time flag with a "true" value
|
|
|
|
TEST_F(InitGoogleTestTest, PrintTimeTrue) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_print_time=1",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::PrintTime(true));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests having a --gtest_print_time flag with a "false" value
|
|
|
|
TEST_F(InitGoogleTestTest, PrintTimeFalse) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_print_time=0",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::PrintTime(false));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing --gtest_print_time=f.
|
|
|
|
TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_print_time=f",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::PrintTime(false));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests parsing --gtest_print_time=F.
|
|
|
|
TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_print_time=F",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::PrintTime(false));
|
|
|
|
}
|
|
|
|
|
2008-07-03 22:38:12 +00:00
|
|
|
// Tests parsing --gtest_repeat=number
|
|
|
|
TEST_F(InitGoogleTestTest, Repeat) {
|
|
|
|
const char* argv[] = {
|
|
|
|
"foo.exe",
|
|
|
|
"--gtest_repeat=1000",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const char* argv2[] = {
|
|
|
|
"foo.exe",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, Flags::Repeat(1000));
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef GTEST_OS_WINDOWS
|
|
|
|
// Tests parsing wide strings.
|
|
|
|
TEST_F(InitGoogleTestTest, WideStrings) {
|
|
|
|
const wchar_t* argv[] = {
|
|
|
|
L"foo.exe",
|
|
|
|
L"--gtest_filter=Foo*",
|
|
|
|
L"--gtest_list_tests=1",
|
|
|
|
L"--gtest_break_on_failure",
|
|
|
|
L"--non_gtest_flag",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
const wchar_t* argv2[] = {
|
|
|
|
L"foo.exe",
|
|
|
|
L"--non_gtest_flag",
|
|
|
|
NULL
|
|
|
|
};
|
|
|
|
|
|
|
|
Flags expected_flags;
|
|
|
|
expected_flags.break_on_failure = true;
|
|
|
|
expected_flags.filter = "Foo*";
|
|
|
|
expected_flags.list_tests = true;
|
|
|
|
|
|
|
|
TEST_PARSING_FLAGS(argv, argv2, expected_flags);
|
|
|
|
}
|
|
|
|
#endif // GTEST_OS_WINDOWS
|
|
|
|
|
|
|
|
// Tests current_test_info() in UnitTest.
|
|
|
|
class CurrentTestInfoTest : public Test {
|
|
|
|
protected:
|
|
|
|
// Tests that current_test_info() returns NULL before the first test in
|
|
|
|
// the test case is run.
|
|
|
|
static void SetUpTestCase() {
|
|
|
|
// There should be no tests running at this point.
|
|
|
|
const TestInfo* test_info =
|
|
|
|
UnitTest::GetInstance()->current_test_info();
|
|
|
|
EXPECT_EQ(NULL, test_info)
|
|
|
|
<< "There should be no tests running at this point.";
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that current_test_info() returns NULL after the last test in
|
|
|
|
// the test case has run.
|
|
|
|
static void TearDownTestCase() {
|
|
|
|
const TestInfo* test_info =
|
|
|
|
UnitTest::GetInstance()->current_test_info();
|
|
|
|
EXPECT_EQ(NULL, test_info)
|
|
|
|
<< "There should be no tests running at this point.";
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// Tests that current_test_info() returns TestInfo for currently running
|
|
|
|
// test by checking the expected test name against the actual one.
|
|
|
|
TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
|
|
|
|
const TestInfo* test_info =
|
|
|
|
UnitTest::GetInstance()->current_test_info();
|
|
|
|
ASSERT_TRUE(NULL != test_info)
|
|
|
|
<< "There is a test running so we should have a valid TestInfo.";
|
|
|
|
EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
|
|
|
|
<< "Expected the name of the currently running test case.";
|
|
|
|
EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
|
|
|
|
<< "Expected the name of the currently running test.";
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that current_test_info() returns TestInfo for currently running
|
|
|
|
// test by checking the expected test name against the actual one. We
|
|
|
|
// use this test to see that the TestInfo object actually changed from
|
|
|
|
// the previous invocation.
|
|
|
|
TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
|
|
|
|
const TestInfo* test_info =
|
|
|
|
UnitTest::GetInstance()->current_test_info();
|
|
|
|
ASSERT_TRUE(NULL != test_info)
|
|
|
|
<< "There is a test running so we should have a valid TestInfo.";
|
|
|
|
EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
|
|
|
|
<< "Expected the name of the currently running test case.";
|
|
|
|
EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
|
|
|
|
<< "Expected the name of the currently running test.";
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace testing
|
|
|
|
|
|
|
|
// These two lines test that we can define tests in a namespace that
|
|
|
|
// has the name "testing" and is nested in another namespace.
|
|
|
|
namespace my_namespace {
|
|
|
|
namespace testing {
|
|
|
|
|
|
|
|
// Makes sure that TEST knows to use ::testing::Test instead of
|
|
|
|
// ::my_namespace::testing::Test.
|
|
|
|
class Test {};
|
|
|
|
|
|
|
|
// Makes sure that an assertion knows to use ::testing::Message instead of
|
|
|
|
// ::my_namespace::testing::Message.
|
|
|
|
class Message {};
|
|
|
|
|
|
|
|
// Makes sure that an assertion knows to use
|
|
|
|
// ::testing::AssertionResult instead of
|
|
|
|
// ::my_namespace::testing::AssertionResult.
|
|
|
|
class AssertionResult {};
|
|
|
|
|
|
|
|
// Tests that an assertion that should succeed works as expected.
|
|
|
|
TEST(NestedTestingNamespaceTest, Success) {
|
|
|
|
EXPECT_EQ(1, 1) << "This shouldn't fail.";
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that an assertion that should fail works as expected.
|
|
|
|
TEST(NestedTestingNamespaceTest, Failure) {
|
|
|
|
EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
|
|
|
|
"This failure is expected.");
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace testing
|
|
|
|
} // namespace my_namespace
|
|
|
|
|
|
|
|
// Tests that one can call superclass SetUp and TearDown methods--
|
|
|
|
// that is, that they are not private.
|
|
|
|
// No tests are based on this fixture; the test "passes" if it compiles
|
|
|
|
// successfully.
|
2008-08-06 21:43:15 +00:00
|
|
|
class ProtectedFixtureMethodsTest : public Test {
|
2008-07-03 22:38:12 +00:00
|
|
|
protected:
|
|
|
|
virtual void SetUp() {
|
2008-08-06 21:43:15 +00:00
|
|
|
Test::SetUp();
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
virtual void TearDown() {
|
2008-08-06 21:43:15 +00:00
|
|
|
Test::TearDown();
|
2008-07-03 22:38:12 +00:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// StreamingAssertionsTest tests the streaming versions of a representative
|
|
|
|
// sample of assertions.
|
|
|
|
TEST(StreamingAssertionsTest, Unconditional) {
|
|
|
|
SUCCEED() << "expected success";
|
|
|
|
EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(StreamingAssertionsTest, Truth) {
|
|
|
|
EXPECT_TRUE(true) << "unexpected failure";
|
|
|
|
ASSERT_TRUE(true) << "unexpected failure";
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(StreamingAssertionsTest, Truth2) {
|
|
|
|
EXPECT_FALSE(false) << "unexpected failure";
|
|
|
|
ASSERT_FALSE(false) << "unexpected failure";
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(StreamingAssertionsTest, IntegerEquals) {
|
|
|
|
EXPECT_EQ(1, 1) << "unexpected failure";
|
|
|
|
ASSERT_EQ(1, 1) << "unexpected failure";
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(StreamingAssertionsTest, IntegerLessThan) {
|
|
|
|
EXPECT_LT(1, 2) << "unexpected failure";
|
|
|
|
ASSERT_LT(1, 2) << "unexpected failure";
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(StreamingAssertionsTest, StringsEqual) {
|
|
|
|
EXPECT_STREQ("foo", "foo") << "unexpected failure";
|
|
|
|
ASSERT_STREQ("foo", "foo") << "unexpected failure";
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(StreamingAssertionsTest, StringsNotEqual) {
|
|
|
|
EXPECT_STRNE("foo", "bar") << "unexpected failure";
|
|
|
|
ASSERT_STRNE("foo", "bar") << "unexpected failure";
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
|
|
|
|
EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
|
|
|
|
ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
|
|
|
|
EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
|
|
|
|
ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(StreamingAssertionsTest, FloatingPointEquals) {
|
|
|
|
EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
|
|
|
|
ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
|
|
|
|
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
|
|
|
|
"expected failure");
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tests that Google Test correctly decides whether to use colors in the output.
|
|
|
|
|
|
|
|
TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
|
|
|
|
GTEST_FLAG(color) = "yes";
|
|
|
|
|
|
|
|
SetEnv("TERM", "xterm"); // TERM supports colors.
|
|
|
|
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
|
|
|
|
|
|
|
|
SetEnv("TERM", "dumb"); // TERM doesn't support colors.
|
|
|
|
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
|
|
|
|
SetEnv("TERM", "dumb"); // TERM doesn't support colors.
|
|
|
|
|
|
|
|
GTEST_FLAG(color) = "True";
|
|
|
|
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
|
|
|
|
|
|
|
|
GTEST_FLAG(color) = "t";
|
|
|
|
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
|
|
|
|
|
|
|
|
GTEST_FLAG(color) = "1";
|
|
|
|
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
|
|
|
|
GTEST_FLAG(color) = "no";
|
|
|
|
|
|
|
|
SetEnv("TERM", "xterm"); // TERM supports colors.
|
|
|
|
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
|
|
|
|
|
|
|
|
SetEnv("TERM", "dumb"); // TERM doesn't support colors.
|
|
|
|
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
|
|
|
|
SetEnv("TERM", "xterm"); // TERM supports colors.
|
|
|
|
|
|
|
|
GTEST_FLAG(color) = "F";
|
|
|
|
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
|
|
|
|
GTEST_FLAG(color) = "0";
|
|
|
|
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
|
|
|
|
GTEST_FLAG(color) = "unknown";
|
|
|
|
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
|
|
|
|
GTEST_FLAG(color) = "auto";
|
|
|
|
|
|
|
|
SetEnv("TERM", "xterm"); // TERM supports colors.
|
|
|
|
EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
|
|
|
|
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
|
|
|
|
GTEST_FLAG(color) = "auto";
|
|
|
|
|
|
|
|
#ifdef GTEST_OS_WINDOWS
|
|
|
|
// On Windows, we ignore the TERM variable as it's usually not set.
|
|
|
|
|
|
|
|
SetEnv("TERM", "dumb");
|
|
|
|
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
|
|
|
|
SetEnv("TERM", "");
|
|
|
|
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
|
|
|
|
SetEnv("TERM", "xterm");
|
|
|
|
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
#else
|
|
|
|
// On non-Windows platforms, we rely on TERM to determine if the
|
|
|
|
// terminal supports colors.
|
|
|
|
|
|
|
|
SetEnv("TERM", "dumb"); // TERM doesn't support colors.
|
|
|
|
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
|
|
|
|
SetEnv("TERM", "emacs"); // TERM doesn't support colors.
|
|
|
|
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
|
|
|
|
SetEnv("TERM", "vt100"); // TERM doesn't support colors.
|
|
|
|
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
|
|
|
|
SetEnv("TERM", "xterm-mono"); // TERM doesn't support colors.
|
|
|
|
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
|
|
|
|
SetEnv("TERM", "xterm"); // TERM supports colors.
|
|
|
|
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
|
|
|
|
SetEnv("TERM", "xterm-color"); // TERM supports colors.
|
|
|
|
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
|
|
|
|
#endif // GTEST_OS_WINDOWS
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef __SYMBIAN32__
|
|
|
|
// We will want to integrate running the unittests to a different
|
|
|
|
// main application on Symbian.
|
|
|
|
int main(int argc, char** argv) {
|
|
|
|
testing::InitGoogleTest(&argc, argv);
|
|
|
|
|
|
|
|
#ifdef GTEST_HAS_DEATH_TEST
|
|
|
|
if (!testing::internal::GTEST_FLAG(internal_run_death_test).empty()) {
|
|
|
|
// Skip the usual output capturing if we're running as the child
|
|
|
|
// process of an threadsafe-style death test.
|
|
|
|
freopen("/dev/null", "w", stdout);
|
|
|
|
}
|
|
|
|
#endif // GTEST_HAS_DEATH_TEST
|
|
|
|
|
|
|
|
// Runs all tests using Google Test.
|
|
|
|
return RUN_ALL_TESTS();
|
|
|
|
}
|
|
|
|
#endif // __SYMBIAN32_
|