date/tz.cpp

1623 lines
47 KiB
C++
Raw Normal View History

2015-07-17 22:30:53 -04:00
// Howard Hinnant
// This work is licensed under a Creative Commons Attribution 4.0 International License.
// http://creativecommons.org/licenses/by/4.0/
#include "tz_private.h"
#include <algorithm>
#include <cctype>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <iterator>
#include <sstream>
#include <string>
#include <tuple>
#include <vector>
#include <sys/stat.h>
#include <unistd.h>
namespace date
{
// +---------------------+
// | Begin Configuration |
// +---------------------+
static std::string install{"/Users/howardhinnant/Downloads/tzdata2015e"};
static const std::vector<const std::string> files =
{
"africa", "antarctica", "asia", "australasia", "backward", "etcetera", "europe",
2015-07-17 22:30:53 -04:00
"pacificnew", "northamerica", "southamerica", "systemv", "leapseconds"
};
// These can be used to reduce the range of the database to save memory
CONSTDATA auto min_year = date::year::min();
CONSTDATA auto max_year = date::year::max();
// Arbitrary day of the year that will be away from any limits.
// Used with year::min() and year::max().
CONSTDATA auto boring_day = date::aug/18;
// +-------------------+
// | End Configuration |
// +-------------------+
static_assert(min_year <= max_year, "Configuration error");
#if __cplusplus >= 201402
static_assert(boring_day.ok(), "Configuration error");
#endif
// Parsing helpers
static
std::string
parse3(std::istream& in)
{
std::string r(3, ' ');
ws(in);
r[0] = static_cast<char>(in.get());
r[1] = static_cast<char>(in.get());
r[2] = static_cast<char>(in.get());
return r;
}
static
unsigned
parse_dow(std::istream& in)
{
CONSTDATA const char* dow_names[] =
{"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};
auto s = parse3(in);
auto dow = std::find(std::begin(dow_names), std::end(dow_names), s) - dow_names;
if (dow >= std::end(dow_names) - std::begin(dow_names))
throw std::runtime_error("oops: bad dow name: " + s);
return static_cast<unsigned>(dow);
}
static
unsigned
parse_month(std::istream& in)
{
CONSTDATA const char* month_names[] =
{"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
auto s = parse3(in);
auto m = std::find(std::begin(month_names), std::end(month_names), s) - month_names;
if (m >= std::end(month_names) - std::begin(month_names))
throw std::runtime_error("oops: bad month name: " + s);
return static_cast<unsigned>(++m);
}
static
std::chrono::seconds
parse_unsigned_time(std::istream& in)
{
using namespace std::chrono;
int x;
in >> x;
auto r = seconds{hours{x}};
if (!in.eof() && in.peek() == ':')
{
in.get();
in >> x;
r += minutes{x};
if (!in.eof() && in.peek() == ':')
{
in.get();
in >> x;
r += seconds{x};
}
}
return r;
}
static
std::chrono::seconds
parse_signed_time(std::istream& in)
{
ws(in);
auto sign = 1;
if (in.peek() == '-')
{
sign = -1;
in.get();
}
else if (in.peek() == '+')
in.get();
return sign * parse_unsigned_time(in);
}
// MonthDayTime
MonthDayTime::MonthDayTime(seconds_point tp, tz timezone)
: zone_(timezone)
{
using namespace date;
const auto dp = floor<days>(tp);
const auto hms = make_time(tp - dp);
const auto ymd = year_month_day(dp);
u = ymd.month() / ymd.day();
h_ = hms.hours();
m_ = hms.minutes();
s_ = hms.seconds();
}
MonthDayTime::MonthDayTime(const date::month_day& md, tz timezone)
: zone_(timezone)
{
u = md;
}
date::day
MonthDayTime::day() const
{
switch (type_)
{
case month_day:
return u.month_day_.day();
case month_last_dow:
return date::day{31};
case lteq:
case gteq:
return u.month_day_weekday_.month_day_.day();
}
}
date::month
MonthDayTime::month() const
{
switch (type_)
{
case month_day:
return u.month_day_.month();
case month_last_dow:
return u.month_weekday_last_.month();
case lteq:
case gteq:
return u.month_day_weekday_.month_day_.month();
}
}
int
MonthDayTime::compare(date::year y, const MonthDayTime& x, date::year yx,
std::chrono::seconds offset, std::chrono::minutes prev_save) const
{
if (zone_ != x.zone_)
{
auto dp0 = to_day_point(y);
auto dp1 = x.to_day_point(yx);
if (std::abs((dp0-dp1).count()) > 1)
return dp0 < dp1 ? -1 : 1;
if (zone_ == tz::local)
{
auto tp0 = to_time_point(y) - prev_save;
if (x.zone_ == tz::utc)
tp0 -= offset;
auto tp1 = x.to_time_point(yx);
return tp0 < tp1 ? -1 : tp0 == tp1 ? 0 : 1;
}
else if (zone_ == tz::standard)
{
auto tp0 = to_time_point(y);
auto tp1 = x.to_time_point(yx);
if (x.zone_ == tz::local)
tp1 -= prev_save;
else
tp0 -= offset;
return tp0 < tp1 ? -1 : tp0 == tp1 ? 0 : 1;
}
// zone_ == tz::utc
auto tp0 = to_time_point(y);
auto tp1 = x.to_time_point(yx);
if (x.zone_ == tz::local)
tp1 -= offset + prev_save;
else
tp1 -= offset;
return tp0 < tp1 ? -1 : tp0 == tp1 ? 0 : 1;
}
auto const t0 = to_time_point(y);
auto const t1 = x.to_time_point(yx);
return t0 < t1 ? -1 : t0 == t1 ? 0 : 1;
}
seconds_point
MonthDayTime::to_sys(date::year y, std::chrono::seconds offset,
std::chrono::seconds save) const
{
using namespace date;
using namespace std::chrono;
auto until_utc = to_time_point(y);
if (zone_ == tz::standard)
until_utc -= offset;
else if (zone_ == tz::local)
until_utc -= offset + save;
return until_utc;
}
MonthDayTime::U&
MonthDayTime::U::operator=(const date::month_day& x)
{
month_day_ = x;
return *this;
}
MonthDayTime::U&
MonthDayTime::U::operator=(const date::month_weekday_last& x)
{
month_weekday_last_ = x;
return *this;
}
MonthDayTime::U&
MonthDayTime::U::operator=(const pair& x)
{
month_day_weekday_ = x;
return *this;
}
date::day_point
MonthDayTime::to_day_point(date::year y) const
{
using namespace std::chrono;
using namespace date;
switch (type_)
{
case month_day:
return day_point(y/u.month_day_);
case month_last_dow:
return day_point(y/u.month_weekday_last_);
case lteq:
{
auto const x = y/u.month_day_weekday_.month_day_;
auto const wd1 = weekday(x);
auto const wd0 = u.month_day_weekday_.weekday_;
return day_point(x) - (wd1-wd0);
}
case gteq:
{
auto const x = y/u.month_day_weekday_.month_day_;
auto const wd1 = u.month_day_weekday_.weekday_;
auto const wd0 = weekday(x);
return day_point(x) + (wd1-wd0);
}
}
}
seconds_point
MonthDayTime::to_time_point(date::year y) const
{
return to_day_point(y) + h_ + m_ + s_;
}
void
MonthDayTime::canonicalize(date::year y)
{
using namespace std::chrono;
using namespace date;
switch (type_)
{
case month_day:
return;
case month_last_dow:
{
auto const ymd = year_month_day(y/u.month_weekday_last_);
u.month_day_ = ymd.month()/ymd.day();
type_ = month_day;
return;
}
case lteq:
{
auto const x = y/u.month_day_weekday_.month_day_;
auto const wd1 = weekday(x);
auto const wd0 = u.month_day_weekday_.weekday_;
auto const ymd = year_month_day(day_point(x) - (wd1-wd0));
u.month_day_ = ymd.month()/ymd.day();
type_ = month_day;
return;
}
case gteq:
{
auto const x = y/u.month_day_weekday_.month_day_;
auto const wd1 = u.month_day_weekday_.weekday_;
auto const wd0 = weekday(x);
auto const ymd = year_month_day(day_point(x) + (wd1-wd0));
u.month_day_ = ymd.month()/ymd.day();
type_ = month_day;
return;
}
}
}
std::istream&
operator>>(std::istream& is, MonthDayTime& x)
{
using namespace date;
using namespace std::chrono;
x = MonthDayTime{};
if (!is.eof() && ws(is) && !is.eof() && is.peek() != '#')
{
auto m = parse_month(is);
if (!is.eof() && ws(is) && !is.eof() && is.peek() != '#')
{
if (is.peek() == 'l')
{
for (int i = 0; i < 4; ++i)
is.get();
auto dow = parse_dow(is);
x.type_ = MonthDayTime::month_last_dow;
x.u = date::month(m)/weekday(dow)[last];
}
else if (std::isalpha(is.peek()))
{
auto dow = parse_dow(is);
char c;
is >> c;
if (c == '<' || c == '>')
{
char c2;
is >> c2;
if (c2 != '=')
throw std::runtime_error(std::string("bad operator: ") + c + c2);
int d;
is >> d;
if (d < 1 || d > 31)
throw std::runtime_error(std::string("bad operator: ") + c + c2
+ std::to_string(d));
x.type_ = c == '<' ? MonthDayTime::lteq : MonthDayTime::gteq;
x.u = {date::month(m)/d, weekday(dow)};
}
else
throw std::runtime_error(std::string("bad operator: ") + c);
}
else // if (std::isdigit(is.peek())
{
int d;
is >> d;
if (d < 1 || d > 31)
throw std::runtime_error(std::string("day of month: ")
+ std::to_string(d));
x.type_ = MonthDayTime::month_day;
x.u = date::month(m)/d;
}
if (!is.eof() && ws(is) && !is.eof() && is.peek() != '#')
{
int t;
is >> t;
x.h_ = hours{t};
if (!is.eof() && is.peek() == ':')
{
is.get();
is >> t;
x.m_ = minutes{t};
if (!is.eof() && is.peek() == ':')
{
is.get();
is >> t;
x.s_ = seconds{t};
}
}
if (!is.eof() && std::isalpha(is.peek()))
{
char c;
is >> c;
switch (c)
{
case 's':
x.zone_ = tz::standard;
break;
case 'u':
x.zone_ = tz::utc;
break;
}
}
}
}
else
{
x.u = month{m}/1;
}
}
return is;
}
std::ostream&
operator<<(std::ostream& os, const MonthDayTime& x)
{
switch (x.type_)
{
case MonthDayTime::month_day:
os << x.u.month_day_ << " ";
break;
case MonthDayTime::month_last_dow:
os << x.u.month_weekday_last_ << " ";
break;
case MonthDayTime::lteq:
os << x.u.month_day_weekday_.weekday_ << " on or before "
<< x.u.month_day_weekday_.month_day_ << " ";
break;
case MonthDayTime::gteq:
if ((static_cast<unsigned>(x.day()) - 1) % 7 == 0)
{
os << (x.u.month_day_weekday_.month_day_.month() /
x.u.month_day_weekday_.weekday_[
(static_cast<unsigned>(x.day()) - 1)/7+1]) << " ";
}
else
{
os << x.u.month_day_weekday_.weekday_ << " on or after "
<< x.u.month_day_weekday_.month_day_ << " ";
}
break;
}
os << date::make_time(x.h_ + x.m_ + x.s_);
if (x.zone_ == tz::utc)
os << "UTC ";
else if (x.zone_ == tz::standard)
os << "STD ";
else
os << " ";
return os;
}
// Rule
Rule::Rule(const std::string& s)
{
try
{
using namespace date;
using namespace std::chrono;
std::istringstream in(s);
in.exceptions(std::ios::failbit | std::ios::badbit);
std::string word;
in >> word >> name_;
int x;
ws(in);
if (std::isalpha(in.peek()))
{
in >> word;
if (word == "min")
{
starting_year_ = year::min();
}
else
throw std::runtime_error("Didn't find expected word: " + word);
}
else
{
in >> x;
starting_year_ = year{x};
}
std::ws(in);
if (std::isalpha(in.peek()))
{
in >> word;
if (word == "only")
{
ending_year_ = starting_year_;
}
else if (word == "max")
{
ending_year_ = year::max();
}
else
throw std::runtime_error("Didn't find expected word: " + word);
}
else
{
in >> x;
ending_year_ = year{x};
}
in >> word; // TYPE (always "-")
assert(word == "-");
in >> starting_at_;
save_ = duration_cast<minutes>(parse_signed_time(in));
in >> abbrev_;
if (abbrev_ == "-")
abbrev_.clear();
assert(hours{0} <= save_ && save_ <= hours{2});
}
catch (...)
{
std::cerr << s << '\n';
std::cerr << *this << '\n';
throw;
}
}
Rule::Rule(const Rule& r, date::year starting_year, date::year ending_year)
: name_(r.name_)
, starting_year_(starting_year)
, ending_year_(ending_year)
, starting_at_(r.starting_at_)
, save_(r.save_)
, abbrev_(r.abbrev_)
{
}
bool
operator==(const Rule& x, const Rule& y)
{
if (std::tie(x.name_, x.save_, x.starting_year_, x.ending_year_) ==
std::tie(y.name_, y.save_, y.starting_year_, y.ending_year_))
return x.month() == y.month() && x.day() == y.day();
return false;
}
bool
operator<(const Rule& x, const Rule& y)
{
using namespace std::chrono;
auto const xm = x.month();
auto const ym = y.month();
if (std::tie(x.name_, x.starting_year_, xm, x.ending_year_) <
std::tie(y.name_, y.starting_year_, ym, y.ending_year_))
return true;
if (std::tie(x.name_, x.starting_year_, xm, x.ending_year_) >
std::tie(y.name_, y.starting_year_, ym, y.ending_year_))
return false;
return x.day() < y.day();
}
bool
operator==(const Rule& x, const date::year& y)
{
return x.starting_year_ <= y && y <= x.ending_year_;
}
bool
operator<(const Rule& x, const date::year& y)
{
return x.ending_year_ < y;
}
bool
operator==(const date::year& x, const Rule& y)
{
return y.starting_year_ <= x && x <= y.ending_year_;
}
bool
operator<(const date::year& x, const Rule& y)
{
return x < y.starting_year_;
}
bool
operator==(const Rule& x, const std::string& y)
{
return x.name() == y;
}
bool
operator<(const Rule& x, const std::string& y)
{
return x.name() < y;
}
bool
operator==(const std::string& x, const Rule& y)
{
return y.name() == x;
}
bool
operator<(const std::string& x, const Rule& y)
{
return x < y.name();
}
std::ostream&
operator<<(std::ostream& os, const Rule& r)
{
using namespace date;
using namespace std::chrono;
save_stream _(os);
os.fill(' ');
os.flags(std::ios::dec | std::ios::left);
os.width(15);
os << r.name_;
os << r.starting_year_ << " " << r.ending_year_ << " ";
os << r.starting_at_;
if (r.save_ >= minutes{0})
os << ' ';
os << date::make_time(r.save_) << " ";
os << r.abbrev_;
return os;
}
date::day
Rule::day() const
{
return starting_at_.day();
}
date::month
Rule::month() const
{
return starting_at_.month();
}
struct find_rule_by_name
{
bool operator()(const Rule& x, const std::string& nm) const
{
return x.name() < nm;
}
bool operator()(const std::string& nm, const Rule& x) const
{
return nm < x.name();
}
};
bool
Rule::overlaps(const Rule& x, const Rule& y)
{
// assume x.starting_year_ <= y.starting_year_;
if (!(x.starting_year_ <= y.starting_year_))
{
std::cerr << x << '\n';
std::cerr << y << '\n';
assert(x.starting_year_ <= y.starting_year_);
}
if (y.starting_year_ > x.ending_year_)
return false;
return !(x.starting_year_ == y.starting_year_ && x.ending_year_ == y.ending_year_);
}
void
Rule::split(std::vector<Rule>& rules, std::size_t i, std::size_t k, std::size_t& e)
{
using namespace date;
using difference_type = std::vector<Rule>::iterator::difference_type;
// rules[i].starting_year_ <= rules[k].starting_year_ &&
// rules[i].ending_year_ >= rules[k].starting_year_ &&
// (rules[i].starting_year_ != rules[k].starting_year_ ||
// rules[i].ending_year_ != rules[k].ending_year_)
assert(rules[i].starting_year_ <= rules[k].starting_year_ &&
rules[i].ending_year_ >= rules[k].starting_year_ &&
(rules[i].starting_year_ != rules[k].starting_year_ ||
rules[i].ending_year_ != rules[k].ending_year_));
if (rules[i].starting_year_ == rules[k].starting_year_)
{
if (rules[k].ending_year_ < rules[i].ending_year_)
{
rules.insert(rules.begin() + static_cast<difference_type>(k+1),
Rule(rules[i], rules[k].ending_year_ + years{1},
std::move(rules[i].ending_year_)));
++e;
rules[i].ending_year_ = rules[k].ending_year_;
}
else // rules[k].ending_year_ > rules[i].ending_year_
{
rules.insert(rules.begin() + static_cast<difference_type>(k+1),
Rule(rules[k], rules[i].ending_year_ + years{1},
std::move(rules[k].ending_year_)));
++e;
rules[k].ending_year_ = rules[i].ending_year_;
}
}
else // rules[i].starting_year_ < rules[k].starting_year_
{
if (rules[k].ending_year_ < rules[i].ending_year_)
{
rules.insert(rules.begin() + static_cast<difference_type>(k),
Rule(rules[i], rules[k].starting_year_, rules[k].ending_year_));
++k;
rules.insert(rules.begin() + static_cast<difference_type>(k+1),
Rule(rules[i], rules[k].ending_year_ + years{1},
std::move(rules[i].ending_year_)));
rules[i].ending_year_ = rules[k].starting_year_ - years{1};
e += 2;
}
else if (rules[k].ending_year_ > rules[i].ending_year_)
{
rules.insert(rules.begin() + static_cast<difference_type>(k),
Rule(rules[i], rules[k].starting_year_, rules[i].ending_year_));
++k;
rules.insert(rules.begin() + static_cast<difference_type>(k+1),
Rule(rules[k], rules[i].ending_year_ + years{1},
std::move(rules[k].ending_year_)));
e += 2;
rules[k].ending_year_ = std::move(rules[i].ending_year_);
rules[i].ending_year_ = rules[k].starting_year_ - years{1};
}
else // rules[k].ending_year_ == rules[i].ending_year_
{
rules.insert(rules.begin() + static_cast<difference_type>(k),
Rule(rules[i], rules[k].starting_year_,
std::move(rules[i].ending_year_)));
++k;
++e;
rules[i].ending_year_ = rules[k].starting_year_ - years{1};
}
}
}
void
Rule::split_overlaps(std::vector<Rule>& rules, std::size_t i, std::size_t& e)
{
using difference_type = std::vector<Rule>::iterator::difference_type;
auto j = i;
for (; i + 1 < e; ++i)
{
for (auto k = i + 1; k < e; ++k)
{
if (overlaps(rules[i], rules[k]))
{
split(rules, i, k, e);
std::sort(rules.begin() + static_cast<difference_type>(i),
rules.begin() + static_cast<difference_type>(e));
}
}
}
for (; j < e; ++j)
{
if (rules[j].starting_year() == rules[j].ending_year())
rules[j].starting_at_.canonicalize(rules[j].starting_year());
}
}
void
Rule::split_overlaps(std::vector<Rule>& rules)
{
using difference_type = std::vector<Rule>::iterator::difference_type;
for (std::size_t i = 0; i < rules.size();)
{
auto e = static_cast<std::size_t>(std::upper_bound(
rules.cbegin()+static_cast<difference_type>(i), rules.cend(), rules[i].name(),
[](const std::string& nm, const Rule& x)
{
return nm < x.name();
}) - rules.cbegin());
split_overlaps(rules, i, e);
auto first = rules.cbegin() + static_cast<difference_type>(i);
auto last = rules.cbegin() + static_cast<difference_type>(e);
auto t = std::lower_bound(first, last, min_year);
if (t > first+1)
{
if (t == last || t->starting_year() >= min_year)
--t;
auto d = static_cast<std::size_t>(t - first);
rules.erase(first, t);
e -= d;
}
first = rules.cbegin() + static_cast<difference_type>(i);
last = rules.cbegin() + static_cast<difference_type>(e);
t = std::upper_bound(first, last, max_year);
if (t != last)
{
auto d = static_cast<std::size_t>(last - t);
rules.erase(t, last);
e -= d;
}
i = e;
}
rules.shrink_to_fit();
}
// Zone
Zone::zonelet::~zonelet()
{
if (tag_ == has_save)
u.save_.~decltype(u.save_)();
else
u.rule_.~decltype(u.rule_)();
}
Zone::zonelet::zonelet()
{
::new(&u.rule_) std::string();
}
Zone::zonelet::zonelet(const zonelet& i)
: gmtoff_(i.gmtoff_)
, tag_(i.tag_)
, format_(i.format_)
, until_year_(i.until_year_)
, until_date_(i.until_date_)
, until_utc_(i.until_utc_)
, until_std_(i.until_std_)
, until_loc_(i.until_loc_)
, initial_save_(i.initial_save_)
, initial_abrev_(i.initial_abrev_)
, first_rule_(i.first_rule_)
, last_rule_(i.last_rule_)
{
if (tag_ == has_save)
::new(&u.save_) std::chrono::minutes(i.u.save_);
else
::new(&u.rule_) std::string(i.u.rule_);
}
Zone::Zone(const std::string& s)
{
try
{
using namespace date;
std::istringstream in(s);
in.exceptions(std::ios::failbit | std::ios::badbit);
std::string word;
in >> word >> name_;
parse_info(in);
}
catch (...)
{
std::cerr << s << '\n';
std::cerr << *this << '\n';
zonelets_.pop_back();
throw;
}
}
void
Zone::add(const std::string& s)
{
try
{
std::istringstream in(s);
in.exceptions(std::ios::failbit | std::ios::badbit);
ws(in);
if (!in.eof() && in.peek() != '#')
parse_info(in);
}
catch (...)
{
std::cerr << s << '\n';
std::cerr << *this << '\n';
zonelets_.pop_back();
throw;
}
}
void
Zone::parse_info(std::istream& in)
{
using namespace date;
using namespace std::chrono;
zonelets_.emplace_back();
auto& zonelet = zonelets_.back();
zonelet.gmtoff_ = parse_signed_time(in);
in >> zonelet.u.rule_;
if (zonelet.u.rule_ == "-")
zonelet.u.rule_.clear();
in >> zonelet.format_;
if (!in.eof())
ws(in);
if (in.eof() || in.peek() == '#')
{
zonelet.until_year_ = year::max();
zonelet.until_date_ = MonthDayTime(boring_day, tz::utc);
}
else
{
int y;
in >> y;
zonelet.until_year_ = year{y};
in >> zonelet.until_date_;
zonelet.until_date_.canonicalize(zonelet.until_year_);
}
if ((zonelet.until_year_ < min_year) ||
(zonelets_.size() > 1 && zonelets_.end()[-2].until_year_ > max_year))
zonelets_.pop_back();
}
// Find the rule that comes chronologically before Rule r. For multi-year rules,
// y specifies which rules in r. For single year rules, y is assumed to be equal
// to the year specified by r.
// Returns a pointer to the chronologically previous rule, and the year within
// that rule. If there is no previous rule, returns nullptr and year::min().
// Preconditions:
// r->starting_year() <= y && y <= r->ending_year()
static
std::pair<const Rule*, date::year>
find_previous_rule(const Rule* r, date::year y)
{
using namespace date;
auto const& rules = get_tzdb().rules;
if (y == r->starting_year())
{
if (r == &rules.front() || r->name() != r[-1].name())
return {nullptr, year::min()};
--r;
if (y == r->starting_year())
return {r, y};
return {r, r->ending_year()};
}
if (r == &rules.front() || r->name() != r[-1].name() ||
r[-1].starting_year() < r->starting_year())
{
while (r < &rules.back() && r->name() == r[1].name() &&
r->starting_year() == r[1].starting_year())
++r;
return {r, --y};
}
--r;
return {r, y};
}
// Find the rule that comes chronologically after Rule r. For multi-year rules,
// y specifies which rules in r. For single year rules, y is assumed to be equal
// to the year specified by r.
// Returns a pointer to the chronologically next rule, and the year within
// that rule. If there is no next rule, return a pointer to a defaulted rule
// and y+1.
// Preconditions:
// first <= r && r < last && r->starting_year() <= y && y <= r->ending_year()
// [first, last) all have the same name
static
std::pair<const Rule*, date::year>
find_next_rule(const Rule* first, const Rule* last, const Rule* r, date::year y)
{
using namespace date;
if (y == r->ending_year())
{
if (r == last-1)
return {nullptr, year::max()};
++r;
if (y == r->ending_year())
return {r, y};
return {r, r->starting_year()};
}
if (r == last-1 || r->ending_year() < r[1].ending_year())
{
while (r > first && r->starting_year() == r[-1].starting_year())
--r;
return {r, ++y};
}
++r;
return {r, y};
}
// Find the rule that comes chronologically after Rule r. For multi-year rules,
// y specifies which rules in r. For single year rules, y is assumed to be equal
// to the year specified by r.
// Returns a pointer to the chronologically next rule, and the year within
// that rule. If there is no next rule, return nullptr and year::max().
// Preconditions:
// r->starting_year() <= y && y <= r->ending_year()
static
std::pair<const Rule*, date::year>
find_next_rule(const Rule* r, date::year y)
{
using namespace date;
auto const& rules = get_tzdb().rules;
if (y == r->ending_year())
{
if (r == &rules.back() || r->name() != r[1].name())
return {nullptr, year::max()};
++r;
if (y == r->ending_year())
return {r, y};
return {r, r->starting_year()};
}
if (r == &rules.back() || r->name() != r[1].name() ||
r->ending_year() < r[1].ending_year())
{
while (r > &rules.front() && r->name() == r[-1].name() &&
r->starting_year() == r[-1].starting_year())
--r;
return {r, ++y};
}
++r;
return {r, y};
}
static
std::pair<const Rule*, date::year>
find_rule_for_zone(const std::pair<const Rule*, const Rule*>& eqr,
const date::year& y, const std::chrono::seconds& offset,
const MonthDayTime& mdt)
{
using namespace std::chrono;
using namespace date;
auto r = eqr.first;
auto ry = r->starting_year();
auto prev_save = minutes{0};
auto prev_year = year::min();
const Rule* prev_rule = nullptr;
while (r != nullptr)
{
if (mdt.compare(y, r->mdt(), ry, offset, prev_save) <= 0)
break;
prev_rule = r;
prev_year = ry;
prev_save = prev_rule->save();
std::tie(r, ry) = find_next_rule(eqr.first, eqr.second, r, ry);
}
return {prev_rule, prev_year};
}
static
std::pair<const Rule*, date::year>
find_rule_for_zone(const std::pair<const Rule*, const Rule*>& eqr,
const seconds_point& tp_utc, const seconds_point& tp_std,
const seconds_point& tp_loc)
{
using namespace std::chrono;
using namespace date;
auto r = eqr.first;
auto ry = r->starting_year();
auto prev_save = minutes{0};
auto prev_year = year::min();
const Rule* prev_rule = nullptr;
while (r != nullptr)
{
bool found;
switch (r->mdt().zone())
{
case tz::utc:
found = tp_utc < r->mdt().to_time_point(ry);
break;
case tz::standard:
found = tp_std < r->mdt().to_time_point(ry);
break;
case tz::local:
found = tp_loc < r->mdt().to_time_point(ry);
break;
default:
assert(false);
}
if (found)
break;
prev_rule = r;
prev_year = ry;
prev_save = prev_rule->save();
std::tie(r, ry) = find_next_rule(eqr.first, eqr.second, r, ry);
}
return {prev_rule, prev_year};
}
static
Info
find_rule(const std::pair<const Rule*, date::year>& first,
const std::pair<const Rule*, date::year>& last,
const date::year& y, const std::chrono::seconds& offset,
const MonthDayTime& mdt, const std::chrono::minutes& initial_save,
const std::string& initial_abrev)
{
using namespace std::chrono;
using namespace date;
auto r = first.first;
auto ry = first.second;
Info x{day_point(year::min()/boring_day), day_point(year::max()/boring_day),
seconds{0}, initial_save, initial_abrev};
while (r != nullptr)
{
auto tr = r->mdt().to_sys(ry, offset, x.save);
auto tx = mdt.to_sys(y, offset, x.save);
// Find last rule where tx >= tr
if (tx <= tr || (r == last.first && ry == last.second))
{
if (tx < tr && r == first.first && ry == first.second)
{
x.end = r->mdt().to_sys(ry, offset, x.save);
break;
}
if (tx < tr)
{
std::tie(r, ry) = find_previous_rule(r, ry); // can't return nullptr for r
assert(r != nullptr);
}
// r != nullptr && tx >= tr (if tr were to be recomputed)
auto prev_save = initial_save;
if (!(r == first.first && ry == first.second))
prev_save = find_previous_rule(r, ry).first->save();
x.begin = r->mdt().to_sys(ry, offset, prev_save);
x.save = r->save();
x.abbrev = r->abbrev();
if (!(r == last.first && ry == last.second))
{
std::tie(r, ry) = find_next_rule(r, ry); // can't return nullptr for r
assert(r != nullptr);
x.end = r->mdt().to_sys(ry, offset, x.save);
}
else
x.end = day_point(year::max()/boring_day);
break;
}
x.save = r->save();
std::tie(r, ry) = find_next_rule(r, ry); // Can't return nullptr for r
assert(r != nullptr);
}
return x;
}
void
Zone::adjust_infos(const std::vector<Rule>& rules)
{
using namespace std::chrono;
using namespace date;
const zonelet* prev_zonelet = nullptr;
for (auto& z : zonelets_)
{
// Classify info as rule-based, has save, or neither
if (!z.u.rule_.empty())
{
// Find out if this zonelet has a rule or a save
auto i = std::lower_bound(rules.begin(), rules.end(), z.u.rule_,
[](const Rule& r, const std::string& nm)
{
return r.name() < nm;
});
if (i == rules.end() || i->name() != z.u.rule_)
{
// The rule doesn't exist. Assume this is a save
try
{
using namespace std::chrono;
std::istringstream in(z.u.rule_);
in.exceptions(std::ios::failbit | std::ios::badbit);
auto tmp = duration_cast<minutes>(parse_signed_time(in));
z.u.rule_.~decltype(z.u.rule_)();
z.tag_ = zonelet::has_save;
::new(&z.u.save_) minutes(tmp);
}
catch (...)
{
std::cerr << name_ << " : " << z.u.rule_ << '\n';
throw;
}
}
}
else
{
// This zone::zonelet has no rule and no save
z.tag_ = zonelet::is_empty;
}
std::pair<const Rule*, const Rule*> eqr{};
if (z.tag_ == zonelet::has_rule)
{
eqr = std::equal_range(rules.data(), rules.data() + rules.size(), z.u.rule_);
assert(eqr.first != eqr.second);
}
minutes final_save{0};
if (z.tag_ == zonelet::has_save)
{
final_save = z.u.save_;
}
else if (z.tag_ == zonelet::has_rule)
{
z.last_rule_ = find_rule_for_zone(eqr, z.until_year_, z.gmtoff_,
z.until_date_);
if (z.last_rule_.first != nullptr)
final_save = z.last_rule_.first->save();
}
z.until_utc_ = z.until_date_.to_sys(z.until_year_, z.gmtoff_, final_save);
z.until_std_ = z.until_utc_ + z.gmtoff_;
z.until_loc_ = z.until_std_ + final_save;
if (z.tag_ == zonelet::has_rule)
{
if (prev_zonelet != nullptr)
{
z.first_rule_ = find_rule_for_zone(eqr, prev_zonelet->until_utc_,
prev_zonelet->until_std_,
prev_zonelet->until_loc_);
if (z.first_rule_.first != nullptr)
{
z.initial_save_ = z.first_rule_.first->save();
z.initial_abrev_ = z.first_rule_.first->abbrev();
if (z.first_rule_ != z.last_rule_)
{
z.first_rule_ = find_next_rule(eqr.first, eqr.second,
z.first_rule_.first,
z.first_rule_.second);
}
else
{
z.first_rule_ = std::make_pair(nullptr, year::min());
z.last_rule_ = std::make_pair(nullptr, year::max());
}
}
}
if (z.first_rule_.first == nullptr && z.last_rule_.first != nullptr)
z.first_rule_ = std::make_pair(eqr.first, eqr.first->starting_year());
}
#ifndef NDEBUG
if (z.first_rule_.first == nullptr)
{
assert(z.first_rule_.second == year::min());
assert(z.last_rule_.first == nullptr);
assert(z.last_rule_.second == year::max());
}
else
{
assert(z.last_rule_.first != nullptr);
}
#endif
prev_zonelet = &z;
}
}
Info
Zone::get_info(std::chrono::system_clock::time_point tp, tz timezone) const
{
using namespace std::chrono;
using namespace date;
assert(timezone != tz::standard);
auto y = year_month_day(floor<days>(tp)).year();
if (y < min_year || y > max_year)
throw std::runtime_error("The year " + std::to_string(static_cast<int>(y)) +
" is out of range:[" + std::to_string(static_cast<int>(min_year)) + ", "
+ std::to_string(static_cast<int>(max_year)) + "]");
auto i = std::upper_bound(zonelets_.begin(), zonelets_.end(), tp,
[timezone](std::chrono::system_clock::time_point t, const zonelet& zl)
{
return timezone == tz::utc ? t < zl.until_utc_ : t < zl.until_loc_;
});
Info r{};
if (i != zonelets_.end())
{
if (i->tag_ == zonelet::has_save)
{
r.begin = i != zonelets_.begin() ? i[-1].until_utc_
: day_point(year::min()/boring_day);
r.end = i->until_utc_;
r.offset = i->gmtoff_ + i->u.save_;
r.save = i->u.save_;
r.abbrev = i->format_;
}
else if (i->u.rule_.empty())
{
r.begin = i != zonelets_.begin() ? i[-1].until_utc_
: day_point(year::min()/boring_day);
r.end = i->until_utc_;
r.offset = i->gmtoff_;
r.abbrev = i->format_;
}
else
{
r = find_rule(i->first_rule_, i->last_rule_, y, i->gmtoff_,
MonthDayTime(floor<seconds>(tp), timezone), i->initial_save_,
i->initial_abrev_);
auto k = i->format_.find("%s");
if (k != std::string::npos)
{
std::string abbrev = r.abbrev;
r.abbrev = i->format_;
r.abbrev.replace(k, 2, abbrev);
}
else
{
k = i->format_.find('/');
if (k != std::string::npos)
{
if (r.save == seconds{0})
r.abbrev = i->format_.substr(0, k);
else
r.abbrev = i->format_.substr(k+1);
}
else
{
r.abbrev = i->format_;
}
}
r.offset = i->gmtoff_ + r.save;
if (i != zonelets_.begin() && r.begin < i[-1].until_utc_)
r.begin = i[-1].until_utc_;
if (r.end > i->until_utc_)
r.end = i->until_utc_;
}
assert(r.begin < r.end);
}
return r;
}
std::ostream&
operator<<(std::ostream& os, const Zone& z)
{
using namespace date;
using namespace std::chrono;
save_stream _(os);
os.fill(' ');
os.flags(std::ios::dec | std::ios::left);
os.width(35);
os << z.name_;
std::string indent;
for (auto const& s : z.zonelets_)
{
os << indent;
if (s.gmtoff_ >= seconds{0})
2015-07-17 22:30:53 -04:00
os << ' ';
os << make_time(s.gmtoff_) << " ";
os.width(15);
if (s.tag_ != Zone::zonelet::has_save)
os << s.u.rule_;
else
{
std::ostringstream tmp;
tmp << make_time(s.u.save_);
os << tmp.str();
}
os.width(8);
os << s.format_ << " ";
os << s.until_year_ << ' ' << s.until_date_;
os << " " << s.until_utc_ << " UTC";
os << " " << s.until_std_ << " STD";
os << " " << s.until_loc_;
os << " " << make_time(s.initial_save_);
os << " " << s.initial_abrev_;
if (s.first_rule_.first != nullptr)
os << " {" << *s.first_rule_.first << ", " << s.first_rule_.second << '}';
else
os << " {" << "nullptr" << ", " << s.first_rule_.second << '}';
if (s.last_rule_.first != nullptr)
os << " {" << *s.last_rule_.first << ", " << s.last_rule_.second << '}';
else
os << " {" << "nullptr" << ", " << s.last_rule_.second << '}';
os << '\n';
if (indent.empty())
indent = std::string(35, ' ');
}
return os;
}
// Link
Link::Link(const std::string& s)
{
using namespace date;
std::istringstream in(s);
in.exceptions(std::ios::failbit | std::ios::badbit);
std::string word;
in >> word >> target_ >> name_;
}
std::ostream&
operator<<(std::ostream& os, const Link& x)
{
using namespace date;
save_stream _(os);
os.fill(' ');
os.flags(std::ios::dec | std::ios::left);
os.width(35);
return os << x.name_ << " --> " << x.target_;
}
// Leap
Leap::Leap(const std::string& s)
{
using namespace date;
std::istringstream in(s);
in.exceptions(std::ios::failbit | std::ios::badbit);
std::string word;
int y;
MonthDayTime date;
in >> word >> y >> date;
date_ = date.to_time_point(year(y));
}
std::ostream&
operator<<(std::ostream& os, const Leap& x)
{
using namespace date;
return os << x.date_ << " +";
}
static
TZ_DB
init_tzdb()
{
using namespace date;
const std::string path = install + "/";
std::string line;
bool continue_zone = false;
TZ_DB db;
for (const auto& filename : files)
{
std::ifstream infile(path + filename);
while (infile)
{
std::getline(infile, line);
if (!line.empty() && line[0] != '#')
{
std::istringstream in(line);
std::string word;
in >> word;
if (word == "Rule")
{
db.rules.push_back(Rule(line));
continue_zone = false;
}
else if (word == "Link")
{
db.links.push_back(Link(line));
continue_zone = false;
}
else if (word == "Leap")
{
db.leaps.push_back(Leap(line));
continue_zone = false;
}
else if (word == "Zone")
{
db.zones.push_back(Zone(line));
continue_zone = true;
}
else if (line[0] == '\t' && continue_zone)
{
db.zones.back().add(line);
}
else
{
std::cerr << line << '\n';
}
}
}
}
std::sort(db.rules.begin(), db.rules.end());
Rule::split_overlaps(db.rules);
std::sort(db.zones.begin(), db.zones.end());
for (auto& z : db.zones)
z.adjust_infos(db.rules);
db.zones.shrink_to_fit();
std::sort(db.links.begin(), db.links.end());
db.links.shrink_to_fit();
std::sort(db.leaps.begin(), db.leaps.end());
db.leaps.shrink_to_fit();
return db;
}
static
TZ_DB&
access_tzdb()
{
static TZ_DB tz_db;
return tz_db;
}
const TZ_DB&
reload_tzdb()
{
return access_tzdb() = init_tzdb();
}
const TZ_DB&
reload_tzdb(const std::string& new_install)
{
install = new_install;
return access_tzdb() = init_tzdb();
}
const TZ_DB&
get_tzdb()
{
static const TZ_DB& ref = access_tzdb() = init_tzdb();
return ref;
}
const Zone*
locate_zone(const std::string& tz_name)
{
const auto& db = get_tzdb();
auto zi = std::lower_bound(db.zones.begin(), db.zones.end(), tz_name,
[](const Zone& z, const std::string& nm)
{
return z.name() < nm;
});
if (zi == db.zones.end() || zi->name() != tz_name)
{
auto li = std::lower_bound(db.links.begin(), db.links.end(), tz_name,
[](const Link& z, const std::string& nm)
{
return z.name() < nm;
});
if (li != db.links.end() && li->name() == tz_name)
{
zi = std::lower_bound(db.zones.begin(), db.zones.end(), li->target(),
[](const Zone& z, const std::string& nm)
{
return z.name() < nm;
});
if (zi != db.zones.end() && zi->name() == li->target())
return &*zi;
}
throw std::runtime_error(tz_name + " not found in timezone database");
}
return &*zi;
}
std::ostream&
operator<<(std::ostream& os, const TZ_DB& db)
{
std::string title("--------------------------------------------"
"--------------------------------------------\n"
"Name ""Start Y ""End Y "
"Beginning ""Offset "
"Designator\n"
"--------------------------------------------"
"--------------------------------------------\n");
int count = 0;
for (const auto& x : db.rules)
{
if (count++ % 50 == 0)
os << title;
os << x << '\n';
}
os << '\n';
title = std::string("---------------------------------------------------------"
"--------------------------------------------------------\n"
"Name ""Offset "
"Rule ""Abrev ""Until\n"
"---------------------------------------------------------"
"--------------------------------------------------------\n");
count = 0;
for (const auto& x : db.zones)
{
if (count++ % 10 == 0)
os << title;
os << x << '\n';
}
os << '\n';
title = std::string("---------------------------------------------------------"
"--------------------------------------------------------\n"
"Alias ""To\n"
"---------------------------------------------------------"
"--------------------------------------------------------\n");
count = 0;
for (const auto& x : db.links)
{
if (count++ % 45 == 0)
os << title;
os << x << '\n';
}
os << '\n';
title = std::string("---------------------------------------------------------"
"--------------------------------------------------------\n"
"Leap second on\n"
"---------------------------------------------------------"
"--------------------------------------------------------\n");
os << title;
for (const auto& x : db.leaps)
os << x << '\n';
return os;
}
// -----------------------
std::ostream&
operator<<(std::ostream& os, const Info& r)
{
using namespace date;
os << r.begin << '\n';
os << r.end << '\n';
os << make_time(r.offset) << "\n";
os << make_time(r.save) << "\n";
os << r.abbrev << '\n';
return os;
}
const Zone*
current_timezone()
{
struct stat sb;
CONSTDATA auto timezone = "/etc/localtime";
if (lstat(timezone, &sb) == -1 || sb.st_size == 0)
throw std::runtime_error("Could not get lstat on /etc/localtime");
std::string result(sb.st_size, '\0');
while (true)
{
auto sz = readlink(timezone, &result.front(), result.size());
if (sz == -1)
throw std::runtime_error("readlink failure");
auto tmp = result.size();
result.resize(sz);
if (sz <= tmp)
break;
}
result.erase(0, 20);
return locate_zone(result);
}
} // namespace date