crashpad/client/crashpad_client_win.cc

314 lines
12 KiB
C++

// Copyright 2015 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "client/crashpad_client.h"
#include <string.h>
#include <windows.h>
#include "base/atomicops.h"
#include "base/logging.h"
#include "base/rand_util.h"
#include "base/strings/string16.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/synchronization/lock.h"
#include "util/file/file_io.h"
#include "util/win/command_line.h"
#include "util/win/critical_section_with_debug_info.h"
#include "util/win/registration_protocol_win.h"
#include "util/win/scoped_handle.h"
namespace {
// This handle is never closed. This is used to signal to the server that a dump
// should be taken in the event of a crash.
HANDLE g_signal_exception = INVALID_HANDLE_VALUE;
// Where we store the exception information that the crash handler reads.
crashpad::ExceptionInformation g_crash_exception_information;
// These handles are never closed. g_signal_non_crash_dump is used to signal to
// the server to take a dump (not due to an exception), and the server will
// signal g_non_crash_dump_done when the dump is completed.
HANDLE g_signal_non_crash_dump = INVALID_HANDLE_VALUE;
HANDLE g_non_crash_dump_done = INVALID_HANDLE_VALUE;
// Guards multiple simultaneous calls to DumpWithoutCrash(). This is leaked.
base::Lock* g_non_crash_dump_lock;
// Where we store a pointer to the context information when taking a non-crash
// dump.
crashpad::ExceptionInformation g_non_crash_exception_information;
// A CRITICAL_SECTION initialized with
// RTL_CRITICAL_SECTION_FLAG_FORCE_DEBUG_INFO to force it to be allocated with a
// valid .DebugInfo field. The address of this critical section is given to the
// handler. All critical sections with debug info are linked in a doubly-linked
// list, so this allows the handler to capture all of them.
CRITICAL_SECTION g_critical_section_with_debug_info;
LONG WINAPI UnhandledExceptionHandler(EXCEPTION_POINTERS* exception_pointers) {
// Tracks whether a thread has already entered UnhandledExceptionHandler.
static base::subtle::AtomicWord have_crashed;
// This is a per-process handler. While this handler is being invoked, other
// threads are still executing as usual, so multiple threads could enter at
// the same time. Because we're in a crashing state, we shouldn't be doing
// anything that might cause allocations, call into kernel mode, etc. So, we
// don't want to take a critical section here to avoid simultaneous access to
// the global exception pointers in ExceptionInformation. Because the crash
// handler will record all threads, it's fine to simply have the second and
// subsequent entrants block here. They will soon be suspended by the crash
// handler, and then the entire process will be terminated below. This means
// that we won't save the exception pointers from the second and further
// crashes, but contention here is very unlikely, and we'll still have a stack
// that's blocked at this location.
if (base::subtle::Barrier_AtomicIncrement(&have_crashed, 1) > 1) {
SleepEx(INFINITE, false);
}
// Otherwise, we're the first thread, so record the exception pointer and
// signal the crash handler.
g_crash_exception_information.thread_id = GetCurrentThreadId();
g_crash_exception_information.exception_pointers =
reinterpret_cast<crashpad::WinVMAddress>(exception_pointers);
// Now signal the crash server, which will take a dump and then terminate us
// when it's complete.
SetEvent(g_signal_exception);
// Time to wait for the handler to create a dump.
const DWORD kMillisecondsUntilTerminate = 60 * 1000;
// Sleep for a while to allow it to process us. Eventually, we terminate
// ourselves in case the crash server is gone, so that we don't leave zombies
// around. This would ideally never happen.
Sleep(kMillisecondsUntilTerminate);
LOG(ERROR) << "crash server did not respond, self-terminating";
const UINT kCrashExitCodeNoDump = 0xffff7001;
TerminateProcess(GetCurrentProcess(), kCrashExitCodeNoDump);
return EXCEPTION_CONTINUE_SEARCH;
}
std::wstring FormatArgumentString(const std::string& name,
const std::wstring& value) {
return std::wstring(L"--") + base::UTF8ToUTF16(name) + L"=" + value;
}
} // namespace
namespace crashpad {
CrashpadClient::CrashpadClient()
: ipc_pipe_() {
}
CrashpadClient::~CrashpadClient() {
}
bool CrashpadClient::StartHandler(
const base::FilePath& handler,
const base::FilePath& database,
const std::string& url,
const std::map<std::string, std::string>& annotations,
const std::vector<std::string>& arguments,
bool restartable) {
DCHECK(ipc_pipe_.empty());
std::string ipc_pipe =
base::StringPrintf("\\\\.\\pipe\\crashpad_%d_", GetCurrentProcessId());
for (int index = 0; index < 16; ++index) {
ipc_pipe.append(1, static_cast<char>(base::RandInt('A', 'Z')));
}
ipc_pipe_ = base::UTF8ToUTF16(ipc_pipe);
std::wstring command_line;
AppendCommandLineArgument(handler.value(), &command_line);
for (const std::string& argument : arguments) {
AppendCommandLineArgument(base::UTF8ToUTF16(argument), &command_line);
}
if (!database.value().empty()) {
AppendCommandLineArgument(FormatArgumentString("database",
database.value()),
&command_line);
}
if (!url.empty()) {
AppendCommandLineArgument(FormatArgumentString("url",
base::UTF8ToUTF16(url)),
&command_line);
}
for (const auto& kv : annotations) {
AppendCommandLineArgument(
FormatArgumentString("annotation",
base::UTF8ToUTF16(kv.first + '=' + kv.second)),
&command_line);
}
AppendCommandLineArgument(FormatArgumentString("pipe-name", ipc_pipe_),
&command_line);
STARTUPINFO startup_info = {};
startup_info.cb = sizeof(startup_info);
startup_info.dwFlags = STARTF_USESTDHANDLES;
startup_info.hStdInput = GetStdHandle(STD_INPUT_HANDLE);
startup_info.hStdOutput = GetStdHandle(STD_OUTPUT_HANDLE);
startup_info.hStdError = GetStdHandle(STD_ERROR_HANDLE);
PROCESS_INFORMATION process_info;
BOOL rv = CreateProcess(handler.value().c_str(),
&command_line[0],
nullptr,
nullptr,
true,
0,
nullptr,
nullptr,
&startup_info,
&process_info);
if (!rv) {
PLOG(ERROR) << "CreateProcess";
return false;
}
rv = CloseHandle(process_info.hThread);
PLOG_IF(WARNING, !rv) << "CloseHandle thread";
rv = CloseHandle(process_info.hProcess);
PLOG_IF(WARNING, !rv) << "CloseHandle process";
return true;
}
bool CrashpadClient::SetHandlerIPCPipe(const std::wstring& ipc_pipe) {
DCHECK(ipc_pipe_.empty());
DCHECK(!ipc_pipe.empty());
ipc_pipe_ = ipc_pipe;
return true;
}
std::wstring CrashpadClient::GetHandlerIPCPipe() const {
DCHECK(!ipc_pipe_.empty());
return ipc_pipe_;
}
bool CrashpadClient::UseHandler() {
DCHECK(!ipc_pipe_.empty());
DCHECK_EQ(g_signal_exception, INVALID_HANDLE_VALUE);
DCHECK_EQ(g_signal_non_crash_dump, INVALID_HANDLE_VALUE);
DCHECK_EQ(g_non_crash_dump_done, INVALID_HANDLE_VALUE);
DCHECK(!g_critical_section_with_debug_info.DebugInfo);
ClientToServerMessage message;
memset(&message, 0, sizeof(message));
message.type = ClientToServerMessage::kRegister;
message.registration.version = RegistrationRequest::kMessageVersion;
message.registration.client_process_id = GetCurrentProcessId();
message.registration.crash_exception_information =
reinterpret_cast<WinVMAddress>(&g_crash_exception_information);
message.registration.non_crash_exception_information =
reinterpret_cast<WinVMAddress>(&g_non_crash_exception_information);
// We create this dummy CRITICAL_SECTION with the
// RTL_CRITICAL_SECTION_FLAG_FORCE_DEBUG_INFO flag set to have an entry point
// into the doubly-linked list of RTL_CRITICAL_SECTION_DEBUG objects. This
// allows us to walk the list at crash time to gather data for !locks. A
// debugger would instead inspect ntdll!RtlCriticalSectionList to get the head
// of the list. But that is not an exported symbol, so on an arbitrary client
// machine, we don't have a way of getting that pointer.
if (InitializeCriticalSectionWithDebugInfoIfPossible(
&g_critical_section_with_debug_info)) {
message.registration.critical_section_address =
reinterpret_cast<WinVMAddress>(&g_critical_section_with_debug_info);
}
ServerToClientMessage response = {0};
if (!SendToCrashHandlerServer(ipc_pipe_, message, &response)) {
return false;
}
// The server returns these already duplicated to be valid in this process.
g_signal_exception = reinterpret_cast<HANDLE>(
static_cast<uintptr_t>(response.registration.request_crash_dump_event));
g_signal_non_crash_dump = reinterpret_cast<HANDLE>(static_cast<uintptr_t>(
response.registration.request_non_crash_dump_event));
g_non_crash_dump_done = reinterpret_cast<HANDLE>(static_cast<uintptr_t>(
response.registration.non_crash_dump_completed_event));
g_non_crash_dump_lock = new base::Lock();
// In theory we could store the previous handler but it is not clear what
// use we have for it.
SetUnhandledExceptionFilter(&UnhandledExceptionHandler);
return true;
}
// static
void CrashpadClient::DumpWithoutCrash(const CONTEXT& context) {
if (g_signal_non_crash_dump == INVALID_HANDLE_VALUE ||
g_non_crash_dump_done == INVALID_HANDLE_VALUE) {
LOG(ERROR) << "haven't called UseHandler()";
return;
}
// In the non-crashing case, we aren't concerned about avoiding calls into
// Win32 APIs, so just use regular locking here in case of multiple threads
// calling this function. If a crash occurs while we're in here, the worst
// that can happen is that the server captures a partial dump for this path
// because on the other thread gathering a crash dump, it TerminateProcess()d,
// causing this one to abort.
base::AutoLock lock(*g_non_crash_dump_lock);
// Create a fake EXCEPTION_POINTERS to give the handler something to work
// with.
EXCEPTION_POINTERS exception_pointers = {0};
// This is logically const, but EXCEPTION_POINTERS does not declare it as
// const, so we have to cast that away from the argument.
exception_pointers.ContextRecord = const_cast<CONTEXT*>(&context);
// We include a fake exception and use a code of '0x517a7ed' (something like
// "simulated") so that it's relatively obvious in windbg that it's not
// actually an exception. Most values in
// https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082.aspx have
// some of the top nibble set, so we make sure to pick a value that doesn't,
// so as to be unlikely to conflict.
const uint32_t kSimulatedExceptionCode = 0x517a7ed;
EXCEPTION_RECORD record = {0};
record.ExceptionCode = kSimulatedExceptionCode;
#if defined(ARCH_CPU_64_BITS)
record.ExceptionAddress = reinterpret_cast<void*>(context.Rip);
#else
record.ExceptionAddress = reinterpret_cast<void*>(context.Eip);
#endif // ARCH_CPU_64_BITS
exception_pointers.ExceptionRecord = &record;
g_non_crash_exception_information.thread_id = GetCurrentThreadId();
g_non_crash_exception_information.exception_pointers =
reinterpret_cast<crashpad::WinVMAddress>(&exception_pointers);
bool set_event_result = !!SetEvent(g_signal_non_crash_dump);
PLOG_IF(ERROR, !set_event_result) << "SetEvent";
DWORD wfso_result = WaitForSingleObject(g_non_crash_dump_done, INFINITE);
PLOG_IF(ERROR, wfso_result != WAIT_OBJECT_0) << "WaitForSingleObject";
}
} // namespace crashpad