mirror of
https://github.com/chromium/crashpad.git
synced 2024-12-31 01:43:03 +08:00
de0979b930
This replaces all occurrences of “typedef Y X;” with “using X = Y;”. R=rsesek@chromium.org Review URL: https://codereview.chromium.org/700143004
641 lines
28 KiB
C++
641 lines
28 KiB
C++
// Copyright 2014 The Crashpad Authors. All rights reserved.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
#include "snapshot/mac/mach_o_image_reader.h"
|
||
|
||
#include <AvailabilityMacros.h>
|
||
#include <dlfcn.h>
|
||
#include <mach-o/dyld.h>
|
||
#include <mach-o/dyld_images.h>
|
||
#include <mach-o/getsect.h>
|
||
#include <mach-o/ldsyms.h>
|
||
#include <mach-o/loader.h>
|
||
#include <mach-o/nlist.h>
|
||
#include <stdint.h>
|
||
|
||
#include "base/strings/stringprintf.h"
|
||
#include "build/build_config.h"
|
||
#include "gtest/gtest.h"
|
||
#include "snapshot/mac/mach_o_image_segment_reader.h"
|
||
#include "snapshot/mac/process_reader.h"
|
||
#include "snapshot/mac/process_types.h"
|
||
#include "util/misc/uuid.h"
|
||
#include "util/test/mac/dyld.h"
|
||
|
||
// This file is responsible for testing MachOImageReader,
|
||
// MachOImageSegmentReader, and MachOImageSymbolTableReader.
|
||
|
||
namespace crashpad {
|
||
namespace test {
|
||
namespace {
|
||
|
||
// Native types and constants, in cases where the 32-bit and 64-bit versions
|
||
// are different.
|
||
#if defined(ARCH_CPU_64_BITS)
|
||
using MachHeader = mach_header_64;
|
||
const uint32_t kMachMagic = MH_MAGIC_64;
|
||
using SegmentCommand = segment_command_64;
|
||
const uint32_t kSegmentCommand = LC_SEGMENT_64;
|
||
using Section = section_64;
|
||
using Nlist = nlist_64;
|
||
#else
|
||
using MachHeader = mach_header;
|
||
const uint32_t kMachMagic = MH_MAGIC;
|
||
using SegmentCommand = segment_command;
|
||
const uint32_t kSegmentCommand = LC_SEGMENT;
|
||
using Section = section;
|
||
|
||
// This needs to be called “struct nlist” because “nlist” without the struct
|
||
// refers to the nlist() function.
|
||
using Nlist = struct nlist;
|
||
#endif
|
||
|
||
#if defined(ARCH_CPU_X86_64)
|
||
const int kCPUType = CPU_TYPE_X86_64;
|
||
#elif defined(ARCH_CPU_X86)
|
||
const int kCPUType = CPU_TYPE_X86;
|
||
#endif
|
||
|
||
// Verifies that |expect_section| and |actual_section| agree.
|
||
void ExpectSection(const Section* expect_section,
|
||
const process_types::section* actual_section) {
|
||
ASSERT_TRUE(expect_section);
|
||
ASSERT_TRUE(actual_section);
|
||
|
||
EXPECT_EQ(
|
||
MachOImageSegmentReader::SectionNameString(expect_section->sectname),
|
||
MachOImageSegmentReader::SectionNameString(actual_section->sectname));
|
||
EXPECT_EQ(
|
||
MachOImageSegmentReader::SegmentNameString(expect_section->segname),
|
||
MachOImageSegmentReader::SegmentNameString(actual_section->segname));
|
||
EXPECT_EQ(expect_section->addr, actual_section->addr);
|
||
EXPECT_EQ(expect_section->size, actual_section->size);
|
||
EXPECT_EQ(expect_section->offset, actual_section->offset);
|
||
EXPECT_EQ(expect_section->align, actual_section->align);
|
||
EXPECT_EQ(expect_section->reloff, actual_section->reloff);
|
||
EXPECT_EQ(expect_section->nreloc, actual_section->nreloc);
|
||
EXPECT_EQ(expect_section->flags, actual_section->flags);
|
||
EXPECT_EQ(expect_section->reserved1, actual_section->reserved1);
|
||
EXPECT_EQ(expect_section->reserved2, actual_section->reserved2);
|
||
}
|
||
|
||
// Verifies that |expect_segment| is a valid Mach-O segment load command for the
|
||
// current system by checking its |cmd| field. Then, verifies that the
|
||
// information in |actual_segment| matches that in |expect_segment|. The
|
||
// |segname|, |vmaddr|, |vmsize|, and |fileoff| fields are examined. Each
|
||
// section within the segment is also examined by calling ExpectSection().
|
||
// Access to each section via both MachOImageSegmentReader::GetSectionByName()
|
||
// and MachOImageReader::GetSectionByName() is verified, expecting that each
|
||
// call produces the same section. Segment and section data addresses are
|
||
// verified against data obtained by calling getsegmentdata() and
|
||
// getsectiondata(). The segment is checked to make sure that it behaves
|
||
// correctly when attempting to look up a nonexistent section by name.
|
||
// |section_index| is used to track the last-used section index in an image on
|
||
// entry, and is reset to the last-used section index on return after the
|
||
// sections are processed. This is used to test that
|
||
// MachOImageReader::GetSectionAtIndex() returns the correct result.
|
||
void ExpectSegmentCommand(const SegmentCommand* expect_segment,
|
||
const MachHeader* expect_image,
|
||
const MachOImageSegmentReader* actual_segment,
|
||
const MachOImageReader* actual_image,
|
||
size_t* section_index) {
|
||
ASSERT_TRUE(expect_segment);
|
||
ASSERT_TRUE(actual_segment);
|
||
|
||
EXPECT_EQ(kSegmentCommand, expect_segment->cmd);
|
||
|
||
std::string segment_name = actual_segment->Name();
|
||
EXPECT_EQ(MachOImageSegmentReader::SegmentNameString(expect_segment->segname),
|
||
segment_name);
|
||
EXPECT_EQ(expect_segment->vmaddr, actual_segment->vmaddr());
|
||
EXPECT_EQ(expect_segment->vmsize, actual_segment->vmsize());
|
||
EXPECT_EQ(expect_segment->fileoff, actual_segment->fileoff());
|
||
|
||
if (actual_segment->SegmentSlides()) {
|
||
EXPECT_EQ(actual_segment->Address(),
|
||
actual_segment->vmaddr() + actual_image->Slide());
|
||
|
||
unsigned long expect_segment_size;
|
||
const uint8_t* expect_segment_data = getsegmentdata(
|
||
expect_image, segment_name.c_str(), &expect_segment_size);
|
||
mach_vm_address_t expect_segment_address =
|
||
reinterpret_cast<mach_vm_address_t>(expect_segment_data);
|
||
EXPECT_EQ(expect_segment_address, actual_segment->Address());
|
||
EXPECT_EQ(expect_segment_size, actual_segment->vmsize());
|
||
EXPECT_EQ(actual_segment->vmsize(), actual_segment->Size());
|
||
} else {
|
||
// getsegmentdata() doesn’t return appropriate data for the __PAGEZERO
|
||
// segment because getsegmentdata() always adjusts for slide, but the
|
||
// __PAGEZERO segment never slides, it just grows. Skip the getsegmentdata()
|
||
// check for that segment according to the same rules that the kernel uses
|
||
// to identify __PAGEZERO. See 10.9.4 xnu-2422.110.17/bsd/kern/mach_loader.c
|
||
// load_segment().
|
||
EXPECT_EQ(actual_segment->Address(), actual_segment->vmaddr());
|
||
EXPECT_EQ(actual_segment->vmsize() + actual_image->Slide(),
|
||
actual_segment->Size());
|
||
}
|
||
|
||
ASSERT_EQ(expect_segment->nsects, actual_segment->nsects());
|
||
|
||
// Make sure that the expected load command is big enough for the number of
|
||
// sections that it claims to have, and set up a pointer to its first section
|
||
// structure.
|
||
ASSERT_EQ(sizeof(*expect_segment) + expect_segment->nsects * sizeof(Section),
|
||
expect_segment->cmdsize);
|
||
const Section* expect_sections =
|
||
reinterpret_cast<const Section*>(&expect_segment[1]);
|
||
|
||
for (size_t index = 0; index < actual_segment->nsects(); ++index) {
|
||
const Section* expect_section = &expect_sections[index];
|
||
const process_types::section* actual_section =
|
||
actual_segment->GetSectionAtIndex(index, nullptr);
|
||
ASSERT_NO_FATAL_FAILURE(
|
||
ExpectSection(&expect_sections[index], actual_section));
|
||
|
||
// Make sure that the section is accessible by GetSectionByName as well.
|
||
std::string section_name =
|
||
MachOImageSegmentReader::SectionNameString(expect_section->sectname);
|
||
const process_types::section* actual_section_by_name =
|
||
actual_segment->GetSectionByName(section_name, nullptr);
|
||
EXPECT_EQ(actual_section, actual_section_by_name);
|
||
|
||
// Make sure that the section is accessible by the parent MachOImageReader’s
|
||
// GetSectionByName.
|
||
mach_vm_address_t actual_section_address;
|
||
const process_types::section* actual_section_from_image_by_name =
|
||
actual_image->GetSectionByName(
|
||
segment_name, section_name, &actual_section_address);
|
||
EXPECT_EQ(actual_section, actual_section_from_image_by_name);
|
||
|
||
if (actual_segment->SegmentSlides()) {
|
||
EXPECT_EQ(actual_section_address,
|
||
actual_section->addr + actual_image->Slide());
|
||
|
||
unsigned long expect_section_size;
|
||
const uint8_t* expect_section_data = getsectiondata(expect_image,
|
||
segment_name.c_str(),
|
||
section_name.c_str(),
|
||
&expect_section_size);
|
||
mach_vm_address_t expect_section_address =
|
||
reinterpret_cast<mach_vm_address_t>(expect_section_data);
|
||
EXPECT_EQ(expect_section_address, actual_section_address);
|
||
EXPECT_EQ(expect_section_size, actual_section->size);
|
||
} else {
|
||
EXPECT_EQ(actual_section_address, actual_section->addr);
|
||
}
|
||
|
||
// Test the parent MachOImageReader’s GetSectionAtIndex as well.
|
||
const MachOImageSegmentReader* containing_segment;
|
||
mach_vm_address_t actual_section_address_at_index;
|
||
const process_types::section* actual_section_from_image_at_index =
|
||
actual_image->GetSectionAtIndex(++(*section_index),
|
||
&containing_segment,
|
||
&actual_section_address_at_index);
|
||
EXPECT_EQ(actual_section, actual_section_from_image_at_index);
|
||
EXPECT_EQ(actual_segment, containing_segment);
|
||
EXPECT_EQ(actual_section_address, actual_section_address_at_index);
|
||
}
|
||
|
||
EXPECT_EQ(nullptr,
|
||
actual_segment->GetSectionByName("NoSuchSection", nullptr));
|
||
}
|
||
|
||
// Walks through the load commands of |expect_image|, finding all of the
|
||
// expected segment commands. For each expected segment command, calls
|
||
// actual_image->GetSegmentByName() to obtain an actual segment command, and
|
||
// calls ExpectSegmentCommand() to compare the expected and actual segments. A
|
||
// series of by-name lookups is also performed on the segment to ensure that it
|
||
// behaves correctly when attempting to look up segment and section names that
|
||
// are not present. |test_section_indices| should be true to test
|
||
// MachOImageReader::GetSectionAtIndex() using out-of-range section indices.
|
||
// This should be tested for at least one module, but it’s very noisy in terms
|
||
// of logging output, so this knob is provided to suppress this portion of the
|
||
// test when looping over all modules.
|
||
void ExpectSegmentCommands(const MachHeader* expect_image,
|
||
const MachOImageReader* actual_image,
|
||
bool test_section_index_bounds) {
|
||
ASSERT_TRUE(expect_image);
|
||
ASSERT_TRUE(actual_image);
|
||
|
||
// &expect_image[1] points right past the end of the mach_header[_64], to the
|
||
// start of the load commands.
|
||
const char* commands_base = reinterpret_cast<const char*>(&expect_image[1]);
|
||
uint32_t position = 0;
|
||
size_t section_index = 0;
|
||
for (uint32_t index = 0; index < expect_image->ncmds; ++index) {
|
||
ASSERT_LT(position, expect_image->sizeofcmds);
|
||
const load_command* command =
|
||
reinterpret_cast<const load_command*>(&commands_base[position]);
|
||
ASSERT_LE(position + command->cmdsize, expect_image->sizeofcmds);
|
||
if (command->cmd == kSegmentCommand) {
|
||
ASSERT_GE(command->cmdsize, sizeof(SegmentCommand));
|
||
const SegmentCommand* expect_segment =
|
||
reinterpret_cast<const SegmentCommand*>(command);
|
||
std::string segment_name =
|
||
MachOImageSegmentReader::SegmentNameString(expect_segment->segname);
|
||
const MachOImageSegmentReader* actual_segment =
|
||
actual_image->GetSegmentByName(segment_name);
|
||
ASSERT_NO_FATAL_FAILURE(ExpectSegmentCommand(expect_segment,
|
||
expect_image,
|
||
actual_segment,
|
||
actual_image,
|
||
§ion_index));
|
||
}
|
||
position += command->cmdsize;
|
||
}
|
||
EXPECT_EQ(expect_image->sizeofcmds, position);
|
||
|
||
if (test_section_index_bounds) {
|
||
// GetSectionAtIndex uses a 1-based index. Make sure that the range is
|
||
// correct.
|
||
EXPECT_EQ(nullptr, actual_image->GetSectionAtIndex(0, nullptr, nullptr));
|
||
EXPECT_EQ(
|
||
nullptr,
|
||
actual_image->GetSectionAtIndex(section_index + 1, nullptr, nullptr));
|
||
}
|
||
|
||
// Make sure that by-name lookups for names that don’t exist work properly:
|
||
// they should return nullptr.
|
||
EXPECT_FALSE(actual_image->GetSegmentByName("NoSuchSegment"));
|
||
EXPECT_FALSE(actual_image->GetSectionByName(
|
||
"NoSuchSegment", "NoSuchSection", nullptr));
|
||
|
||
// Make sure that there’s a __TEXT segment so that this can do a valid test of
|
||
// a section that doesn’t exist within a segment that does.
|
||
EXPECT_TRUE(actual_image->GetSegmentByName(SEG_TEXT));
|
||
EXPECT_FALSE(
|
||
actual_image->GetSectionByName(SEG_TEXT, "NoSuchSection", nullptr));
|
||
|
||
// Similarly, make sure that a section name that exists in one segment isn’t
|
||
// accidentally found during a lookup for that section in a different segment.
|
||
//
|
||
// If the image has no sections (unexpected), then any section lookup should
|
||
// fail, and these initial values of test_segment and test_section are fine
|
||
// for the EXPECT_FALSE checks on GetSectionByName() below.
|
||
std::string test_segment = SEG_DATA;
|
||
std::string test_section = SECT_TEXT;
|
||
|
||
const process_types::section* section =
|
||
actual_image->GetSectionAtIndex(1, nullptr, nullptr);
|
||
if (section) {
|
||
// Use the name of the first section in the image as the section that
|
||
// shouldn’t appear in a different segment. If the first section is in the
|
||
// __TEXT segment (as it is normally), then a section by the same name
|
||
// wouldn’t be expected in the __DATA segment. But if the first section is
|
||
// in any other segment, then it wouldn’t be expected in the __TEXT segment.
|
||
if (MachOImageSegmentReader::SegmentNameString(section->segname) ==
|
||
SEG_TEXT) {
|
||
test_segment = SEG_DATA;
|
||
} else {
|
||
test_segment = SEG_TEXT;
|
||
}
|
||
test_section =
|
||
MachOImageSegmentReader::SectionNameString(section->sectname);
|
||
|
||
// It should be possible to look up the first section by name.
|
||
EXPECT_EQ(section,
|
||
actual_image->GetSectionByName(
|
||
section->segname, section->sectname, nullptr));
|
||
}
|
||
EXPECT_FALSE(
|
||
actual_image->GetSectionByName("NoSuchSegment", test_section, nullptr));
|
||
EXPECT_FALSE(
|
||
actual_image->GetSectionByName(test_segment, test_section, nullptr));
|
||
|
||
// The __LINKEDIT segment normally does exist but doesn’t have any sections.
|
||
EXPECT_FALSE(
|
||
actual_image->GetSectionByName(SEG_LINKEDIT, "NoSuchSection", nullptr));
|
||
EXPECT_FALSE(
|
||
actual_image->GetSectionByName(SEG_LINKEDIT, SECT_TEXT, nullptr));
|
||
}
|
||
|
||
// In some cases, the expected slide value for an image is unknown, because no
|
||
// reasonable API to return it is provided. When this happens, use kSlideUnknown
|
||
// to avoid checking the actual slide value against anything.
|
||
const mach_vm_size_t kSlideUnknown = std::numeric_limits<mach_vm_size_t>::max();
|
||
|
||
// Verifies that |expect_image| is a vaild Mach-O header for the current system
|
||
// by checking its |magic| and |cputype| fields. Then, verifies that the
|
||
// information in |actual_image| matches that in |expect_image|. The |filetype|
|
||
// field is examined, actual_image->Address() is compared to
|
||
// |expect_image_address|, and actual_image->Slide() is compared to
|
||
// |expect_image_slide|, unless |expect_image_slide| is kSlideUnknown. Various
|
||
// other attributes of |actual_image| are sanity-checked depending on the Mach-O
|
||
// file type. Finally, ExpectSegmentCommands() is called to verify all that all
|
||
// of the segments match; |test_section_index_bounds| is used as an argument to
|
||
// that function.
|
||
void ExpectMachImage(const MachHeader* expect_image,
|
||
mach_vm_address_t expect_image_address,
|
||
mach_vm_size_t expect_image_slide,
|
||
const MachOImageReader* actual_image,
|
||
bool test_section_index_bounds) {
|
||
ASSERT_TRUE(expect_image);
|
||
ASSERT_TRUE(actual_image);
|
||
|
||
EXPECT_EQ(kMachMagic, expect_image->magic);
|
||
EXPECT_EQ(kCPUType, expect_image->cputype);
|
||
|
||
EXPECT_EQ(expect_image->filetype, actual_image->FileType());
|
||
EXPECT_EQ(expect_image_address, actual_image->Address());
|
||
if (expect_image_slide != kSlideUnknown) {
|
||
EXPECT_EQ(expect_image_slide, actual_image->Slide());
|
||
}
|
||
|
||
const MachOImageSegmentReader* actual_text_segment =
|
||
actual_image->GetSegmentByName(SEG_TEXT);
|
||
ASSERT_TRUE(actual_text_segment);
|
||
EXPECT_EQ(expect_image_address, actual_text_segment->Address());
|
||
EXPECT_EQ(actual_image->Size(), actual_text_segment->Size());
|
||
EXPECT_EQ(expect_image_address - actual_text_segment->vmaddr(),
|
||
actual_image->Slide());
|
||
|
||
uint32_t file_type = actual_image->FileType();
|
||
EXPECT_TRUE(file_type == MH_EXECUTE || file_type == MH_DYLIB ||
|
||
file_type == MH_DYLINKER || file_type == MH_BUNDLE);
|
||
|
||
if (file_type == MH_EXECUTE || file_type == MH_DYLINKER) {
|
||
EXPECT_EQ("/usr/lib/dyld", actual_image->DylinkerName());
|
||
}
|
||
|
||
// For these, just don’t crash or anything.
|
||
if (file_type == MH_DYLIB) {
|
||
actual_image->DylibVersion();
|
||
}
|
||
actual_image->SourceVersion();
|
||
UUID uuid;
|
||
actual_image->UUID(&uuid);
|
||
|
||
ASSERT_NO_FATAL_FAILURE(ExpectSegmentCommands(
|
||
expect_image, actual_image, test_section_index_bounds));
|
||
}
|
||
|
||
// Verifies the symbol whose Nlist structure is |entry| and whose name is |name|
|
||
// matches the value of a symbol by the same name looked up in |actual_image|.
|
||
// MachOImageReader::LookUpExternalDefinedSymbol() is used for this purpose.
|
||
// Only external defined symbols are considered, other types of symbols are
|
||
// excluded because LookUpExternalDefinedSymbol() only deals with external
|
||
// defined symbols.
|
||
void ExpectSymbol(const Nlist* entry,
|
||
const char* name,
|
||
const MachOImageReader* actual_image) {
|
||
SCOPED_TRACE(name);
|
||
|
||
uint32_t entry_type = entry->n_type & N_TYPE;
|
||
if ((entry->n_type & N_STAB) == 0 && (entry->n_type & N_PEXT) == 0 &&
|
||
entry_type != N_UNDF && entry_type != N_PBUD &&
|
||
(entry->n_type & N_EXT) == 1) {
|
||
// Note that this catches more symbols than MachOImageSymbolTableReader
|
||
// does. This test looks for all external defined symbols, but the
|
||
// implementation excludes indirect (N_INDR) symbols. This is intentional,
|
||
// because indirect symbols are currently not seen in the wild, but if they
|
||
// begin to be used more widely, this test is expected to catch them so that
|
||
// a decision can be made regarding whether support ought to be implemented.
|
||
mach_vm_address_t actual_address;
|
||
ASSERT_TRUE(
|
||
actual_image->LookUpExternalDefinedSymbol(name, &actual_address));
|
||
|
||
// Since the nlist interface was used to read the symbol, use it to compute
|
||
// the symbol address too. This isn’t perfect, and it should be possible in
|
||
// theory to use dlsym() to get the expected address of a symbol. In
|
||
// practice, dlsym() is difficult to use when only a MachHeader* is
|
||
// available as in this function, as opposed to a void* opaque handle. It is
|
||
// possible to get a void* handle by using dladdr() to find the file name
|
||
// corresponding to the MachHeader*, and using dlopen() again on that name,
|
||
// assuming it hasn’t changed on disk since being loaded. However, even with
|
||
// that being done, dlsym() can only deal with symbols whose names begin
|
||
// with an underscore (and requires that the leading underscore be trimmed).
|
||
// dlsym() will also return different addresses for symbols that are
|
||
// resolved via symbol resolver.
|
||
mach_vm_address_t expect_address = entry->n_value;
|
||
if (entry_type == N_SECT) {
|
||
EXPECT_GE(entry->n_sect, 1u);
|
||
expect_address += actual_image->Slide();
|
||
} else {
|
||
EXPECT_EQ(NO_SECT, entry->n_sect);
|
||
}
|
||
|
||
EXPECT_EQ(expect_address, actual_address);
|
||
}
|
||
|
||
// You’d think that it might be a good idea to verify that if the conditions
|
||
// above weren’t met, that the symbol didn’t show up in actual_image’s symbol
|
||
// table at all. Unfortunately, it’s possible for the same name to show up as
|
||
// both an external defined symbol and as something else, so it’s not possible
|
||
// to verify this reliably.
|
||
}
|
||
|
||
// Locates the symbol table in |expect_image| and verifies that all of the
|
||
// external defined symbols found there are also present and have the same
|
||
// values in |actual_image|. ExpectSymbol() is used to verify the actual symbol.
|
||
void ExpectSymbolTable(const MachHeader* expect_image,
|
||
const MachOImageReader* actual_image) {
|
||
// This intentionally consults only LC_SYMTAB and not LC_DYSYMTAB so that it
|
||
// can look at the larger set of all symbols. The actual implementation being
|
||
// tested is free to consult LC_DYSYMTAB, but that’s considered an
|
||
// optimization. It’s not necessary for the test, and it’s better for the test
|
||
// to expose bugs in that optimization rather than duplicate them.
|
||
const char* commands_base = reinterpret_cast<const char*>(&expect_image[1]);
|
||
uint32_t position = 0;
|
||
const symtab_command* symtab = nullptr;
|
||
const SegmentCommand* linkedit = nullptr;
|
||
for (uint32_t index = 0; index < expect_image->ncmds; ++index) {
|
||
ASSERT_LT(position, expect_image->sizeofcmds);
|
||
const load_command* command =
|
||
reinterpret_cast<const load_command*>(&commands_base[position]);
|
||
ASSERT_LE(position + command->cmdsize, expect_image->sizeofcmds);
|
||
if (command->cmd == LC_SYMTAB) {
|
||
ASSERT_FALSE(symtab);
|
||
ASSERT_EQ(sizeof(symtab_command), command->cmdsize);
|
||
symtab = reinterpret_cast<const symtab_command*>(command);
|
||
} else if (command->cmd == kSegmentCommand) {
|
||
ASSERT_GE(command->cmdsize, sizeof(SegmentCommand));
|
||
const SegmentCommand* segment =
|
||
reinterpret_cast<const SegmentCommand*>(command);
|
||
std::string segment_name =
|
||
MachOImageSegmentReader::SegmentNameString(segment->segname);
|
||
if (segment_name == SEG_LINKEDIT) {
|
||
ASSERT_FALSE(linkedit);
|
||
linkedit = segment;
|
||
}
|
||
}
|
||
position += command->cmdsize;
|
||
}
|
||
|
||
if (symtab) {
|
||
ASSERT_TRUE(linkedit);
|
||
|
||
const char* linkedit_base =
|
||
reinterpret_cast<const char*>(linkedit->vmaddr + actual_image->Slide());
|
||
const Nlist* nlist = reinterpret_cast<const Nlist*>(
|
||
linkedit_base + symtab->symoff - linkedit->fileoff);
|
||
const char* strtab = linkedit_base + symtab->stroff - linkedit->fileoff;
|
||
|
||
for (uint32_t index = 0; index < symtab->nsyms; ++index) {
|
||
const Nlist* entry = nlist + index;
|
||
const char* name = strtab + entry->n_un.n_strx;
|
||
ASSERT_NO_FATAL_FAILURE(ExpectSymbol(entry, name, actual_image));
|
||
}
|
||
}
|
||
|
||
mach_vm_address_t ignore;
|
||
EXPECT_FALSE(actual_image->LookUpExternalDefinedSymbol("", &ignore));
|
||
EXPECT_FALSE(
|
||
actual_image->LookUpExternalDefinedSymbol("NoSuchSymbolName", &ignore));
|
||
EXPECT_FALSE(
|
||
actual_image->LookUpExternalDefinedSymbol("_NoSuchSymbolName", &ignore));
|
||
}
|
||
|
||
TEST(MachOImageReader, Self_MainExecutable) {
|
||
ProcessReader process_reader;
|
||
ASSERT_TRUE(process_reader.Initialize(mach_task_self()));
|
||
|
||
const MachHeader* mh_execute_header =
|
||
reinterpret_cast<MachHeader*>(dlsym(RTLD_MAIN_ONLY, MH_EXECUTE_SYM));
|
||
ASSERT_NE(nullptr, mh_execute_header);
|
||
mach_vm_address_t mh_execute_header_address =
|
||
reinterpret_cast<mach_vm_address_t>(mh_execute_header);
|
||
|
||
MachOImageReader image_reader;
|
||
ASSERT_TRUE(image_reader.Initialize(
|
||
&process_reader, mh_execute_header_address, "executable"));
|
||
|
||
EXPECT_EQ(static_cast<uint32_t>(MH_EXECUTE), image_reader.FileType());
|
||
|
||
// The main executable has image index 0.
|
||
intptr_t image_slide = _dyld_get_image_vmaddr_slide(0);
|
||
|
||
ASSERT_NO_FATAL_FAILURE(ExpectMachImage(mh_execute_header,
|
||
mh_execute_header_address,
|
||
image_slide,
|
||
&image_reader,
|
||
true));
|
||
|
||
// This symbol, __mh_execute_header, is known to exist in all MH_EXECUTE
|
||
// Mach-O files.
|
||
mach_vm_address_t symbol_address;
|
||
ASSERT_TRUE(image_reader.LookUpExternalDefinedSymbol(_MH_EXECUTE_SYM,
|
||
&symbol_address));
|
||
EXPECT_EQ(mh_execute_header_address, symbol_address);
|
||
|
||
ASSERT_NO_FATAL_FAILURE(ExpectSymbolTable(mh_execute_header, &image_reader));
|
||
}
|
||
|
||
TEST(MachOImageReader, Self_DyldImages) {
|
||
ProcessReader process_reader;
|
||
ASSERT_TRUE(process_reader.Initialize(mach_task_self()));
|
||
|
||
uint32_t count = _dyld_image_count();
|
||
ASSERT_GE(count, 1u);
|
||
|
||
for (uint32_t index = 0; index < count; ++index) {
|
||
const char* image_name = _dyld_get_image_name(index);
|
||
SCOPED_TRACE(base::StringPrintf("index %u, image %s", index, image_name));
|
||
|
||
// _dyld_get_image_header() is poorly-declared: it’s declared as returning
|
||
// const mach_header* in both 32-bit and 64-bit environments, but in the
|
||
// 64-bit environment, it should be const mach_header_64*.
|
||
const MachHeader* mach_header =
|
||
reinterpret_cast<const MachHeader*>(_dyld_get_image_header(index));
|
||
mach_vm_address_t image_address =
|
||
reinterpret_cast<mach_vm_address_t>(mach_header);
|
||
|
||
MachOImageReader image_reader;
|
||
ASSERT_TRUE(
|
||
image_reader.Initialize(&process_reader, image_address, image_name));
|
||
|
||
uint32_t file_type = image_reader.FileType();
|
||
if (index == 0) {
|
||
EXPECT_EQ(static_cast<uint32_t>(MH_EXECUTE), file_type);
|
||
} else {
|
||
EXPECT_TRUE(file_type == MH_DYLIB || file_type == MH_BUNDLE);
|
||
}
|
||
|
||
intptr_t image_slide = _dyld_get_image_vmaddr_slide(index);
|
||
ASSERT_NO_FATAL_FAILURE(ExpectMachImage(
|
||
mach_header, image_address, image_slide, &image_reader, false));
|
||
|
||
ASSERT_NO_FATAL_FAILURE(ExpectSymbolTable(mach_header, &image_reader));
|
||
}
|
||
|
||
// Now that all of the modules have been verified, make sure that dyld itself
|
||
// can be read properly too.
|
||
const struct dyld_all_image_infos* dyld_image_infos =
|
||
_dyld_get_all_image_infos();
|
||
ASSERT_GE(dyld_image_infos->version, 1u);
|
||
EXPECT_EQ(count, dyld_image_infos->infoArrayCount);
|
||
|
||
if (dyld_image_infos->version >= 2) {
|
||
SCOPED_TRACE("dyld");
|
||
|
||
// dyld_all_image_infos::dyldImageLoadAddress is poorly-declared too.
|
||
const MachHeader* mach_header = reinterpret_cast<const MachHeader*>(
|
||
dyld_image_infos->dyldImageLoadAddress);
|
||
mach_vm_address_t image_address =
|
||
reinterpret_cast<mach_vm_address_t>(mach_header);
|
||
|
||
MachOImageReader image_reader;
|
||
ASSERT_TRUE(
|
||
image_reader.Initialize(&process_reader, image_address, "dyld"));
|
||
|
||
EXPECT_EQ(static_cast<uint32_t>(MH_DYLINKER), image_reader.FileType());
|
||
|
||
// There’s no good API to get dyld’s slide, so don’t bother checking it.
|
||
ASSERT_NO_FATAL_FAILURE(ExpectMachImage(
|
||
mach_header, image_address, kSlideUnknown, &image_reader, false));
|
||
|
||
ASSERT_NO_FATAL_FAILURE(ExpectSymbolTable(mach_header, &image_reader));
|
||
}
|
||
|
||
#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_7
|
||
// If dyld is new enough to record UUIDs, check the UUID of any module that
|
||
// it says has one. Note that dyld doesn’t record UUIDs of anything that
|
||
// loaded out of the shared cache, but it should at least have a UUID for the
|
||
// main executable if it has one.
|
||
if (dyld_image_infos->version >= 8 && dyld_image_infos->uuidArray) {
|
||
for (uint32_t index = 0;
|
||
index < dyld_image_infos->uuidArrayCount;
|
||
++index) {
|
||
const dyld_uuid_info* dyld_image = &dyld_image_infos->uuidArray[index];
|
||
SCOPED_TRACE(base::StringPrintf("uuid index %u", index));
|
||
|
||
// dyld_uuid_info::imageLoadAddress is poorly-declared too.
|
||
const MachHeader* mach_header =
|
||
reinterpret_cast<const MachHeader*>(dyld_image->imageLoadAddress);
|
||
mach_vm_address_t image_address =
|
||
reinterpret_cast<mach_vm_address_t>(mach_header);
|
||
|
||
MachOImageReader image_reader;
|
||
ASSERT_TRUE(
|
||
image_reader.Initialize(&process_reader, image_address, "uuid"));
|
||
|
||
// There’s no good way to get the image’s slide here, although the image
|
||
// should have already been checked along with its slide above, in the
|
||
// loop through all images.
|
||
ExpectMachImage(
|
||
mach_header, image_address, kSlideUnknown, &image_reader, false);
|
||
|
||
UUID expected_uuid;
|
||
expected_uuid.InitializeFromBytes(dyld_image->imageUUID);
|
||
UUID actual_uuid;
|
||
image_reader.UUID(&actual_uuid);
|
||
EXPECT_EQ(expected_uuid, actual_uuid);
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
|
||
} // namespace
|
||
} // namespace test
|
||
} // namespace crashpad
|