crashpad/util/process/process_memory_test.cc
Dave Bort 906fce1d01 Make ProcessMemory an abstract interface
Only a Linux implementation for now, but similar code for other
OSes can move behind it in the future.

Bug: crashpad:196
Change-Id: I05966db1599a9cac3146d2a3d964e7ad8629d616
Reviewed-on: https://chromium-review.googlesource.com/685408
Reviewed-by: Mark Mentovai <mark@chromium.org>
Commit-Queue: Dave Bort <dbort@google.com>
2017-10-13 21:45:14 +00:00

406 lines
12 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2017 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "util/process/process_memory.h"
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>
#include <memory>
#include "gtest/gtest.h"
#include "test/errors.h"
#include "test/multiprocess.h"
#include "util/file/file_io.h"
#include "util/misc/from_pointer_cast.h"
#include "util/posix/scoped_mmap.h"
#include "util/process/process_memory_linux.h"
namespace crashpad {
namespace test {
namespace {
class TargetProcessTest : public Multiprocess {
public:
TargetProcessTest() : Multiprocess() {}
~TargetProcessTest() {}
void RunAgainstSelf() { DoTest(getpid()); }
void RunAgainstForked() { Run(); }
private:
void MultiprocessParent() override { DoTest(ChildPID()); }
void MultiprocessChild() override { CheckedReadFileAtEOF(ReadPipeHandle()); }
virtual void DoTest(pid_t pid) = 0;
DISALLOW_COPY_AND_ASSIGN(TargetProcessTest);
};
class ReadTest : public TargetProcessTest {
public:
ReadTest()
: TargetProcessTest(),
page_size_(getpagesize()),
region_size_(4 * page_size_),
region_(new char[region_size_]) {
for (size_t index = 0; index < region_size_; ++index) {
region_[index] = index % 256;
}
}
private:
void DoTest(pid_t pid) override {
ProcessMemoryLinux memory;
ASSERT_TRUE(memory.Initialize(pid));
VMAddress address = FromPointerCast<VMAddress>(region_.get());
std::unique_ptr<char[]> result(new char[region_size_]);
// Ensure that the entire region can be read.
ASSERT_TRUE(memory.Read(address, region_size_, result.get()));
EXPECT_EQ(memcmp(region_.get(), result.get(), region_size_), 0);
// Ensure that a read of length 0 succeeds and doesnt touch the result.
memset(result.get(), '\0', region_size_);
ASSERT_TRUE(memory.Read(address, 0, result.get()));
for (size_t i = 0; i < region_size_; ++i) {
EXPECT_EQ(result[i], 0);
}
// Ensure that a read starting at an unaligned address works.
ASSERT_TRUE(memory.Read(address + 1, region_size_ - 1, result.get()));
EXPECT_EQ(memcmp(region_.get() + 1, result.get(), region_size_ - 1), 0);
// Ensure that a read ending at an unaligned address works.
ASSERT_TRUE(memory.Read(address, region_size_ - 1, result.get()));
EXPECT_EQ(memcmp(region_.get(), result.get(), region_size_ - 1), 0);
// Ensure that a read starting and ending at unaligned addresses works.
ASSERT_TRUE(memory.Read(address + 1, region_size_ - 2, result.get()));
EXPECT_EQ(memcmp(region_.get() + 1, result.get(), region_size_ - 2), 0);
// Ensure that a read of exactly one page works.
ASSERT_TRUE(memory.Read(address + page_size_, page_size_, result.get()));
EXPECT_EQ(memcmp(region_.get() + page_size_, result.get(), page_size_), 0);
// Ensure that reading exactly a single byte works.
result[1] = 'J';
ASSERT_TRUE(memory.Read(address + 2, 1, result.get()));
EXPECT_EQ(result[0], region_[2]);
EXPECT_EQ(result[1], 'J');
}
const size_t page_size_;
const size_t region_size_;
std::unique_ptr<char[]> region_;
DISALLOW_COPY_AND_ASSIGN(ReadTest);
};
TEST(ProcessMemory, ReadSelf) {
ReadTest test;
test.RunAgainstSelf();
}
TEST(ProcessMemory, ReadForked) {
ReadTest test;
test.RunAgainstForked();
}
bool ReadCString(const ProcessMemory& memory,
const char* pointer,
std::string* result) {
return memory.ReadCString(FromPointerCast<VMAddress>(pointer), result);
}
bool ReadCStringSizeLimited(const ProcessMemory& memory,
const char* pointer,
size_t size,
std::string* result) {
return memory.ReadCStringSizeLimited(
FromPointerCast<VMAddress>(pointer), size, result);
}
constexpr char kConstCharEmpty[] = "";
constexpr char kConstCharShort[] = "A short const char[]";
class ReadCStringTest : public TargetProcessTest {
public:
ReadCStringTest(bool limit_size)
: TargetProcessTest(),
member_char_empty_(""),
member_char_short_("A short member char[]"),
limit_size_(limit_size) {
const size_t kStringLongSize = 4 * getpagesize();
for (size_t index = 0; index < kStringLongSize; ++index) {
string_long_.push_back((index % 255) + 1);
}
EXPECT_EQ(string_long_.size(), kStringLongSize);
}
private:
void DoTest(pid_t pid) override {
ProcessMemoryLinux memory;
ASSERT_TRUE(memory.Initialize(pid));
std::string result;
if (limit_size_) {
ASSERT_TRUE(ReadCStringSizeLimited(
memory, kConstCharEmpty, arraysize(kConstCharEmpty), &result));
EXPECT_EQ(result, kConstCharEmpty);
ASSERT_TRUE(ReadCStringSizeLimited(
memory, kConstCharShort, arraysize(kConstCharShort), &result));
EXPECT_EQ(result, kConstCharShort);
EXPECT_FALSE(ReadCStringSizeLimited(
memory, kConstCharShort, arraysize(kConstCharShort) - 1, &result));
ASSERT_TRUE(ReadCStringSizeLimited(
memory, member_char_empty_, strlen(member_char_empty_) + 1, &result));
EXPECT_EQ(result, member_char_empty_);
ASSERT_TRUE(ReadCStringSizeLimited(
memory, member_char_short_, strlen(member_char_short_) + 1, &result));
EXPECT_EQ(result, member_char_short_);
EXPECT_FALSE(ReadCStringSizeLimited(
memory, member_char_short_, strlen(member_char_short_), &result));
ASSERT_TRUE(ReadCStringSizeLimited(
memory, string_long_.c_str(), string_long_.size() + 1, &result));
EXPECT_EQ(result, string_long_);
EXPECT_FALSE(ReadCStringSizeLimited(
memory, string_long_.c_str(), string_long_.size(), &result));
} else {
ASSERT_TRUE(ReadCString(memory, kConstCharEmpty, &result));
EXPECT_EQ(result, kConstCharEmpty);
ASSERT_TRUE(ReadCString(memory, kConstCharShort, &result));
EXPECT_EQ(result, kConstCharShort);
ASSERT_TRUE(ReadCString(memory, member_char_empty_, &result));
EXPECT_EQ(result, member_char_empty_);
ASSERT_TRUE(ReadCString(memory, member_char_short_, &result));
EXPECT_EQ(result, member_char_short_);
ASSERT_TRUE(ReadCString(memory, string_long_.c_str(), &result));
EXPECT_EQ(result, string_long_);
}
}
std::string string_long_;
const char* member_char_empty_;
const char* member_char_short_;
const bool limit_size_;
DISALLOW_COPY_AND_ASSIGN(ReadCStringTest);
};
TEST(ProcessMemory, ReadCStringSelf) {
ReadCStringTest test(/* limit_size= */ false);
test.RunAgainstSelf();
}
TEST(ProcessMemory, ReadCStringForked) {
ReadCStringTest test(/* limit_size= */ false);
test.RunAgainstForked();
}
TEST(ProcessMemory, ReadCStringSizeLimitedSelf) {
ReadCStringTest test(/* limit_size= */ true);
test.RunAgainstSelf();
}
TEST(ProcessMemory, ReadCStringSizeLimitedForked) {
ReadCStringTest test(/* limit_size= */ true);
test.RunAgainstForked();
}
class ReadUnmappedTest : public TargetProcessTest {
public:
ReadUnmappedTest()
: TargetProcessTest(),
page_size_(getpagesize()),
region_size_(2 * page_size_),
result_(new char[region_size_]) {
if (!pages_.ResetMmap(nullptr,
region_size_,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1,
0)) {
ADD_FAILURE();
return;
}
char* region = pages_.addr_as<char*>();
for (size_t index = 0; index < region_size_; ++index) {
region[index] = index % 256;
}
EXPECT_TRUE(pages_.ResetAddrLen(region, page_size_));
}
private:
void DoTest(pid_t pid) override {
ProcessMemoryLinux memory;
ASSERT_TRUE(memory.Initialize(pid));
VMAddress page_addr1 = pages_.addr_as<VMAddress>();
VMAddress page_addr2 = page_addr1 + page_size_;
EXPECT_TRUE(memory.Read(page_addr1, page_size_, result_.get()));
EXPECT_TRUE(memory.Read(page_addr2 - 1, 1, result_.get()));
EXPECT_FALSE(memory.Read(page_addr1, region_size_, result_.get()));
EXPECT_FALSE(memory.Read(page_addr2, page_size_, result_.get()));
EXPECT_FALSE(memory.Read(page_addr2 - 1, 2, result_.get()));
}
ScopedMmap pages_;
const size_t page_size_;
const size_t region_size_;
std::unique_ptr<char[]> result_;
DISALLOW_COPY_AND_ASSIGN(ReadUnmappedTest);
};
TEST(ProcessMemory, ReadUnmappedSelf) {
ReadUnmappedTest test;
ASSERT_FALSE(testing::Test::HasFailure());
test.RunAgainstSelf();
}
TEST(ProcessMemory, ReadUnmappedForked) {
ReadUnmappedTest test;
ASSERT_FALSE(testing::Test::HasFailure());
test.RunAgainstForked();
}
class ReadCStringUnmappedTest : public TargetProcessTest {
public:
ReadCStringUnmappedTest(bool limit_size)
: TargetProcessTest(),
page_size_(getpagesize()),
region_size_(2 * page_size_),
limit_size_(limit_size) {
if (!pages_.ResetMmap(nullptr,
region_size_,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS,
-1,
0)) {
ADD_FAILURE();
return;
}
char* region = pages_.addr_as<char*>();
for (size_t index = 0; index < region_size_; ++index) {
region[index] = 1 + index % 255;
}
// A string at the start of the mapped region
string1_ = region;
string1_[expected_length_] = '\0';
// A string near the end of the mapped region
string2_ = region + page_size_ - expected_length_ * 2;
string2_[expected_length_] = '\0';
// A string that crosses from the mapped into the unmapped region
string3_ = region + page_size_ - expected_length_ + 1;
string3_[expected_length_] = '\0';
// A string entirely in the unmapped region
string4_ = region + page_size_ + 10;
string4_[expected_length_] = '\0';
result_.reserve(expected_length_ + 1);
EXPECT_TRUE(pages_.ResetAddrLen(region, page_size_));
}
private:
void DoTest(pid_t pid) {
ProcessMemoryLinux memory;
ASSERT_TRUE(memory.Initialize(pid));
if (limit_size_) {
ASSERT_TRUE(ReadCStringSizeLimited(
memory, string1_, expected_length_ + 1, &result_));
EXPECT_EQ(result_, string1_);
ASSERT_TRUE(ReadCStringSizeLimited(
memory, string2_, expected_length_ + 1, &result_));
EXPECT_EQ(result_, string2_);
EXPECT_FALSE(ReadCStringSizeLimited(
memory, string3_, expected_length_ + 1, &result_));
EXPECT_FALSE(ReadCStringSizeLimited(
memory, string4_, expected_length_ + 1, &result_));
} else {
ASSERT_TRUE(ReadCString(memory, string1_, &result_));
EXPECT_EQ(result_, string1_);
ASSERT_TRUE(ReadCString(memory, string2_, &result_));
EXPECT_EQ(result_, string2_);
EXPECT_FALSE(ReadCString(memory, string3_, &result_));
EXPECT_FALSE(ReadCString(memory, string4_, &result_));
}
}
std::string result_;
ScopedMmap pages_;
const size_t page_size_;
const size_t region_size_;
static const size_t expected_length_ = 10;
char* string1_;
char* string2_;
char* string3_;
char* string4_;
const bool limit_size_;
DISALLOW_COPY_AND_ASSIGN(ReadCStringUnmappedTest);
};
TEST(ProcessMemory, ReadCStringUnmappedSelf) {
ReadCStringUnmappedTest test(/* limit_size= */ false);
ASSERT_FALSE(testing::Test::HasFailure());
test.RunAgainstSelf();
}
TEST(ProcessMemory, ReadCStringUnmappedForked) {
ReadCStringUnmappedTest test(/* limit_size= */ false);
ASSERT_FALSE(testing::Test::HasFailure());
test.RunAgainstForked();
}
TEST(ProcessMemory, ReadCStringSizeLimitedUnmappedSelf) {
ReadCStringUnmappedTest test(/* limit_size= */ true);
ASSERT_FALSE(testing::Test::HasFailure());
test.RunAgainstSelf();
}
TEST(ProcessMemory, ReadCStringSizeLimitedUnmappedForked) {
ReadCStringUnmappedTest test(/* limit_size= */ true);
ASSERT_FALSE(testing::Test::HasFailure());
test.RunAgainstForked();
}
} // namespace
} // namespace test
} // namespace crashpad