crashpad/util/win/process_info_test.cc
Mark Mentovai 43b798b492 test: Fix paths for crashpad_tests monolith in Chromium
Instead of individual per-directory test executables like
crashpad_util_test, all Crashpad tests in Chromium will be run from a
single crashpad_tests executable.

Test: crashpad_util_test Paths.Executable, ProcessInfo.Self; crashpad_snapshot_test PEImageReader.DebugDirectory
Bug: chromium:779790
Change-Id: If95272fd641734fbdb8e231fbcdc4e7ccb2cb822
Reviewed-on: https://chromium-review.googlesource.com/749303
Reviewed-by: Scott Graham <scottmg@chromium.org>
2017-11-01 17:00:30 +00:00

656 lines
21 KiB
C++

// Copyright 2015 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "util/win/process_info.h"
#include <dbghelp.h>
#include <intrin.h>
#include <wchar.h>
#include <memory>
#include "base/files/file_path.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "build/build_config.h"
#include "gtest/gtest.h"
#include "test/errors.h"
#include "test/gtest_disabled.h"
#include "test/scoped_temp_dir.h"
#include "test/test_paths.h"
#include "test/win/child_launcher.h"
#include "util/file/file_io.h"
#include "util/misc/from_pointer_cast.h"
#include "util/misc/random_string.h"
#include "util/misc/uuid.h"
#include "util/win/command_line.h"
#include "util/win/get_function.h"
#include "util/win/handle.h"
#include "util/win/scoped_handle.h"
namespace crashpad {
namespace test {
namespace {
constexpr wchar_t kNtdllName[] = L"\\ntdll.dll";
#if !defined(ARCH_CPU_64_BITS)
bool IsProcessWow64(HANDLE process_handle) {
static const auto is_wow64_process =
GET_FUNCTION(L"kernel32.dll", ::IsWow64Process);
if (!is_wow64_process)
return false;
BOOL is_wow64;
if (!is_wow64_process(process_handle, &is_wow64)) {
PLOG(ERROR) << "IsWow64Process";
return false;
}
return !!is_wow64;
}
#endif
void VerifyAddressInInCodePage(const ProcessInfo& process_info,
WinVMAddress code_address) {
// Make sure the child code address is an code page address with the right
// information.
const ProcessInfo::MemoryBasicInformation64Vector& memory_info =
process_info.MemoryInfo();
bool found_region = false;
for (const auto& mi : memory_info) {
if (mi.BaseAddress <= code_address &&
mi.BaseAddress + mi.RegionSize > code_address) {
EXPECT_EQ(mi.State, static_cast<DWORD>(MEM_COMMIT));
EXPECT_EQ(mi.Protect, static_cast<DWORD>(PAGE_EXECUTE_READ));
EXPECT_EQ(mi.Type, static_cast<DWORD>(MEM_IMAGE));
EXPECT_FALSE(found_region);
found_region = true;
}
}
EXPECT_TRUE(found_region);
}
TEST(ProcessInfo, Self) {
ProcessInfo process_info;
ASSERT_TRUE(process_info.Initialize(GetCurrentProcess()));
EXPECT_EQ(process_info.ProcessID(), GetCurrentProcessId());
EXPECT_GT(process_info.ParentProcessID(), 0u);
#if defined(ARCH_CPU_64_BITS)
EXPECT_TRUE(process_info.Is64Bit());
EXPECT_FALSE(process_info.IsWow64());
#else
EXPECT_FALSE(process_info.Is64Bit());
if (IsProcessWow64(GetCurrentProcess()))
EXPECT_TRUE(process_info.IsWow64());
else
EXPECT_FALSE(process_info.IsWow64());
#endif
std::wstring command_line;
EXPECT_TRUE(process_info.CommandLine(&command_line));
EXPECT_EQ(command_line, std::wstring(GetCommandLine()));
std::vector<ProcessInfo::Module> modules;
EXPECT_TRUE(process_info.Modules(&modules));
ASSERT_GE(modules.size(), 2u);
std::wstring self_name =
std::wstring(1, '\\') +
TestPaths::ExpectedExecutableBasename(L"crashpad_util_test").value();
ASSERT_GE(modules[0].name.size(), self_name.size());
EXPECT_EQ(modules[0].name.substr(modules[0].name.size() - self_name.size()),
self_name);
ASSERT_GE(modules[1].name.size(), wcslen(kNtdllName));
EXPECT_EQ(modules[1].name.substr(modules[1].name.size() - wcslen(kNtdllName)),
kNtdllName);
EXPECT_EQ(modules[0].dll_base,
reinterpret_cast<uintptr_t>(GetModuleHandle(nullptr)));
EXPECT_EQ(modules[1].dll_base,
reinterpret_cast<uintptr_t>(GetModuleHandle(L"ntdll.dll")));
EXPECT_GT(modules[0].size, 0u);
EXPECT_GT(modules[1].size, 0u);
EXPECT_EQ(modules[0].timestamp,
GetTimestampForLoadedLibrary(GetModuleHandle(nullptr)));
// System modules are forced to particular stamps and the file header values
// don't match the on-disk times. Just make sure we got some data here.
EXPECT_GT(modules[1].timestamp, 0);
// Find something we know is a code address and confirm expected memory
// information settings.
VerifyAddressInInCodePage(process_info,
FromPointerCast<WinVMAddress>(_ReturnAddress()));
}
void TestOtherProcess(TestPaths::Architecture architecture) {
ProcessInfo process_info;
UUID done_uuid;
done_uuid.InitializeWithNew();
ScopedKernelHANDLE done(
CreateEvent(nullptr, true, false, done_uuid.ToString16().c_str()));
ASSERT_TRUE(done.get()) << ErrorMessage("CreateEvent");
base::FilePath child_test_executable =
TestPaths::BuildArtifact(L"util",
L"process_info_test_child",
TestPaths::FileType::kExecutable,
architecture);
std::wstring args;
AppendCommandLineArgument(done_uuid.ToString16(), &args);
ChildLauncher child(child_test_executable, args);
ASSERT_NO_FATAL_FAILURE(child.Start());
// The child sends us a code address we can look up in the memory map.
WinVMAddress code_address;
CheckedReadFileExactly(
child.stdout_read_handle(), &code_address, sizeof(code_address));
ASSERT_TRUE(process_info.Initialize(child.process_handle()));
// Tell the test it's OK to shut down now that we've read our data.
EXPECT_TRUE(SetEvent(done.get())) << ErrorMessage("SetEvent");
EXPECT_EQ(child.WaitForExit(), 0u);
std::vector<ProcessInfo::Module> modules;
EXPECT_TRUE(process_info.Modules(&modules));
ASSERT_GE(modules.size(), 3u);
std::wstring child_name = L"\\crashpad_util_test_process_info_test_child.exe";
ASSERT_GE(modules[0].name.size(), child_name.size());
EXPECT_EQ(modules[0].name.substr(modules[0].name.size() - child_name.size()),
child_name);
ASSERT_GE(modules[1].name.size(), wcslen(kNtdllName));
EXPECT_EQ(modules[1].name.substr(modules[1].name.size() - wcslen(kNtdllName)),
kNtdllName);
// lz32.dll is an uncommonly-used-but-always-available module that the test
// binary manually loads.
static constexpr wchar_t kLz32dllName[] = L"\\lz32.dll";
ASSERT_GE(modules.back().name.size(), wcslen(kLz32dllName));
EXPECT_EQ(modules.back().name.substr(modules.back().name.size() -
wcslen(kLz32dllName)),
kLz32dllName);
VerifyAddressInInCodePage(process_info, code_address);
}
TEST(ProcessInfo, OtherProcess) {
TestOtherProcess(TestPaths::Architecture::kDefault);
}
#if defined(ARCH_CPU_64_BITS)
TEST(ProcessInfo, OtherProcessWOW64) {
if (!TestPaths::Has32BitBuildArtifacts()) {
DISABLED_TEST();
}
TestOtherProcess(TestPaths::Architecture::k32Bit);
}
#endif // ARCH_CPU_64_BITS
TEST(ProcessInfo, AccessibleRangesNone) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_FREE;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(2, 4),
memory_info);
EXPECT_TRUE(result.empty());
}
TEST(ProcessInfo, AccessibleRangesOneInside) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(2, 4),
memory_info);
ASSERT_EQ(result.size(), 1u);
EXPECT_EQ(result[0].base(), 2u);
EXPECT_EQ(result[0].size(), 4u);
}
TEST(ProcessInfo, AccessibleRangesOneTruncatedSize) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
mbi.BaseAddress = 10;
mbi.RegionSize = 20;
mbi.State = MEM_FREE;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(5, 10),
memory_info);
ASSERT_EQ(result.size(), 1u);
EXPECT_EQ(result[0].base(), 5u);
EXPECT_EQ(result[0].size(), 5u);
}
TEST(ProcessInfo, AccessibleRangesOneMovedStart) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_FREE;
memory_info.push_back(mbi);
mbi.BaseAddress = 10;
mbi.RegionSize = 20;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(5, 10),
memory_info);
ASSERT_EQ(result.size(), 1u);
EXPECT_EQ(result[0].base(), 10u);
EXPECT_EQ(result[0].size(), 5u);
}
TEST(ProcessInfo, ReserveIsInaccessible) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_RESERVE;
memory_info.push_back(mbi);
mbi.BaseAddress = 10;
mbi.RegionSize = 20;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(5, 10),
memory_info);
ASSERT_EQ(result.size(), 1u);
EXPECT_EQ(result[0].base(), 10u);
EXPECT_EQ(result[0].size(), 5u);
}
TEST(ProcessInfo, PageGuardIsInaccessible) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_COMMIT;
mbi.Protect = PAGE_GUARD;
memory_info.push_back(mbi);
mbi.BaseAddress = 10;
mbi.RegionSize = 20;
mbi.State = MEM_COMMIT;
mbi.Protect = 0;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(5, 10),
memory_info);
ASSERT_EQ(result.size(), 1u);
EXPECT_EQ(result[0].base(), 10u);
EXPECT_EQ(result[0].size(), 5u);
}
TEST(ProcessInfo, PageNoAccessIsInaccessible) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_COMMIT;
mbi.Protect = PAGE_NOACCESS;
memory_info.push_back(mbi);
mbi.BaseAddress = 10;
mbi.RegionSize = 20;
mbi.State = MEM_COMMIT;
mbi.Protect = 0;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(5, 10),
memory_info);
ASSERT_EQ(result.size(), 1u);
EXPECT_EQ(result[0].base(), 10u);
EXPECT_EQ(result[0].size(), 5u);
}
TEST(ProcessInfo, AccessibleRangesCoalesced) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_FREE;
memory_info.push_back(mbi);
mbi.BaseAddress = 10;
mbi.RegionSize = 2;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
mbi.BaseAddress = 12;
mbi.RegionSize = 5;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(11, 4),
memory_info);
ASSERT_EQ(result.size(), 1u);
EXPECT_EQ(result[0].base(), 11u);
EXPECT_EQ(result[0].size(), 4u);
}
TEST(ProcessInfo, AccessibleRangesMiddleUnavailable) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
mbi.BaseAddress = 10;
mbi.RegionSize = 5;
mbi.State = MEM_FREE;
memory_info.push_back(mbi);
mbi.BaseAddress = 15;
mbi.RegionSize = 100;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(5, 45),
memory_info);
ASSERT_EQ(result.size(), 2u);
EXPECT_EQ(result[0].base(), 5u);
EXPECT_EQ(result[0].size(), 5u);
EXPECT_EQ(result[1].base(), 15u);
EXPECT_EQ(result[1].size(), 35u);
}
TEST(ProcessInfo, RequestedBeforeMap) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 10;
mbi.RegionSize = 10;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(5, 10),
memory_info);
ASSERT_EQ(result.size(), 1u);
EXPECT_EQ(result[0].base(), 10u);
EXPECT_EQ(result[0].size(), 5u);
}
TEST(ProcessInfo, RequestedAfterMap) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 10;
mbi.RegionSize = 10;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(
CheckedRange<WinVMAddress, WinVMSize>(15, 100), memory_info);
ASSERT_EQ(result.size(), 1u);
EXPECT_EQ(result[0].base(), 15u);
EXPECT_EQ(result[0].size(), 5u);
}
TEST(ProcessInfo, ReadableRanges) {
SYSTEM_INFO system_info;
GetSystemInfo(&system_info);
const size_t kBlockSize = system_info.dwPageSize;
// Allocate 6 pages, and then commit the second, fourth, and fifth, and mark
// two as committed, but PAGE_NOACCESS, so we have a setup like this:
// 0 1 2 3 4 5
// +-----------------------------------------------+
// | ????? | | xxxxx | | | ????? |
// +-----------------------------------------------+
void* reserve_region =
VirtualAlloc(nullptr, kBlockSize * 6, MEM_RESERVE, PAGE_READWRITE);
ASSERT_TRUE(reserve_region);
uintptr_t reserved_as_int = reinterpret_cast<uintptr_t>(reserve_region);
void* readable1 =
VirtualAlloc(reinterpret_cast<void*>(reserved_as_int + kBlockSize),
kBlockSize,
MEM_COMMIT,
PAGE_READWRITE);
ASSERT_TRUE(readable1);
void* readable2 =
VirtualAlloc(reinterpret_cast<void*>(reserved_as_int + (kBlockSize * 3)),
kBlockSize * 2,
MEM_COMMIT,
PAGE_READWRITE);
ASSERT_TRUE(readable2);
void* no_access =
VirtualAlloc(reinterpret_cast<void*>(reserved_as_int + (kBlockSize * 2)),
kBlockSize,
MEM_COMMIT,
PAGE_NOACCESS);
ASSERT_TRUE(no_access);
HANDLE current_process = GetCurrentProcess();
ProcessInfo info;
info.Initialize(current_process);
auto ranges = info.GetReadableRanges(
CheckedRange<WinVMAddress, WinVMSize>(reserved_as_int, kBlockSize * 6));
ASSERT_EQ(ranges.size(), 2u);
EXPECT_EQ(ranges[0].base(), reserved_as_int + kBlockSize);
EXPECT_EQ(ranges[0].size(), kBlockSize);
EXPECT_EQ(ranges[1].base(), reserved_as_int + (kBlockSize * 3));
EXPECT_EQ(ranges[1].size(), kBlockSize * 2);
// Also make sure what we think we can read corresponds with what we can
// actually read.
std::unique_ptr<unsigned char[]> into(new unsigned char[kBlockSize * 6]);
SIZE_T bytes_read;
EXPECT_TRUE(ReadProcessMemory(
current_process, readable1, into.get(), kBlockSize, &bytes_read));
EXPECT_EQ(bytes_read, kBlockSize);
EXPECT_TRUE(ReadProcessMemory(
current_process, readable2, into.get(), kBlockSize * 2, &bytes_read));
EXPECT_EQ(bytes_read, kBlockSize * 2);
EXPECT_FALSE(ReadProcessMemory(
current_process, no_access, into.get(), kBlockSize, &bytes_read));
EXPECT_FALSE(ReadProcessMemory(
current_process, reserve_region, into.get(), kBlockSize, &bytes_read));
EXPECT_FALSE(ReadProcessMemory(current_process,
reserve_region,
into.get(),
kBlockSize * 6,
&bytes_read));
}
struct ScopedRegistryKeyCloseTraits {
static HKEY InvalidValue() {
return nullptr;
}
static void Free(HKEY key) {
RegCloseKey(key);
}
};
using ScopedRegistryKey =
base::ScopedGeneric<HKEY, ScopedRegistryKeyCloseTraits>;
TEST(ProcessInfo, Handles) {
ScopedTempDir temp_dir;
ScopedFileHandle file(LoggingOpenFileForWrite(
temp_dir.path().Append(FILE_PATH_LITERAL("test_file")),
FileWriteMode::kTruncateOrCreate,
FilePermissions::kWorldReadable));
ASSERT_TRUE(file.is_valid());
SECURITY_ATTRIBUTES security_attributes = {0};
security_attributes.nLength = sizeof(security_attributes);
security_attributes.bInheritHandle = true;
ScopedFileHandle inherited_file(CreateFile(
temp_dir.path().Append(FILE_PATH_LITERAL("inheritable")).value().c_str(),
GENERIC_WRITE,
0,
&security_attributes,
CREATE_NEW,
FILE_ATTRIBUTE_NORMAL,
nullptr));
ASSERT_TRUE(inherited_file.is_valid());
HKEY key;
ASSERT_EQ(RegOpenKeyEx(
HKEY_CURRENT_USER, L"SOFTWARE\\Microsoft", 0, KEY_READ, &key),
ERROR_SUCCESS);
ScopedRegistryKey scoped_key(key);
ASSERT_TRUE(scoped_key.is_valid());
std::wstring mapping_name =
base::UTF8ToUTF16(base::StringPrintf("Local\\test_mapping_%lu_%s",
GetCurrentProcessId(),
RandomString().c_str()));
ScopedKernelHANDLE mapping(CreateFileMapping(INVALID_HANDLE_VALUE,
nullptr,
PAGE_READWRITE,
0,
1024,
mapping_name.c_str()));
ASSERT_TRUE(mapping.is_valid()) << ErrorMessage("CreateFileMapping");
ProcessInfo info;
info.Initialize(GetCurrentProcess());
bool found_file_handle = false;
bool found_inherited_file_handle = false;
bool found_key_handle = false;
bool found_mapping_handle = false;
for (auto handle : info.Handles()) {
if (handle.handle == HandleToInt(file.get())) {
EXPECT_FALSE(found_file_handle);
found_file_handle = true;
EXPECT_EQ(handle.type_name, L"File");
EXPECT_EQ(handle.handle_count, 1u);
EXPECT_NE(handle.pointer_count, 0u);
EXPECT_EQ(handle.granted_access & STANDARD_RIGHTS_ALL,
static_cast<uint32_t>(STANDARD_RIGHTS_READ |
STANDARD_RIGHTS_WRITE | SYNCHRONIZE));
EXPECT_EQ(handle.attributes, 0u);
}
if (handle.handle == HandleToInt(inherited_file.get())) {
EXPECT_FALSE(found_inherited_file_handle);
found_inherited_file_handle = true;
EXPECT_EQ(handle.type_name, L"File");
EXPECT_EQ(handle.handle_count, 1u);
EXPECT_NE(handle.pointer_count, 0u);
EXPECT_EQ(handle.granted_access & STANDARD_RIGHTS_ALL,
static_cast<uint32_t>(STANDARD_RIGHTS_READ |
STANDARD_RIGHTS_WRITE | SYNCHRONIZE));
// OBJ_INHERIT from ntdef.h, but including that conflicts with other
// headers.
constexpr uint32_t kObjInherit = 0x2;
EXPECT_EQ(handle.attributes, kObjInherit);
}
if (handle.handle == HandleToInt(scoped_key.get())) {
EXPECT_FALSE(found_key_handle);
found_key_handle = true;
EXPECT_EQ(handle.type_name, L"Key");
EXPECT_EQ(handle.handle_count, 1u);
EXPECT_NE(handle.pointer_count, 0u);
EXPECT_EQ(handle.granted_access & STANDARD_RIGHTS_ALL,
static_cast<uint32_t>(STANDARD_RIGHTS_READ));
EXPECT_EQ(handle.attributes, 0u);
}
if (handle.handle == HandleToInt(mapping.get())) {
EXPECT_FALSE(found_mapping_handle);
found_mapping_handle = true;
EXPECT_EQ(handle.type_name, L"Section");
EXPECT_EQ(handle.handle_count, 1u);
EXPECT_NE(handle.pointer_count, 0u);
EXPECT_EQ(handle.granted_access & STANDARD_RIGHTS_ALL,
static_cast<uint32_t>(DELETE | READ_CONTROL | WRITE_DAC |
WRITE_OWNER | STANDARD_RIGHTS_READ |
STANDARD_RIGHTS_WRITE));
EXPECT_EQ(handle.attributes, 0u);
}
}
EXPECT_TRUE(found_file_handle);
EXPECT_TRUE(found_inherited_file_handle);
EXPECT_TRUE(found_key_handle);
EXPECT_TRUE(found_mapping_handle);
}
TEST(ProcessInfo, OutOfRangeCheck) {
constexpr size_t kAllocationSize = 12345;
std::unique_ptr<char[]> safe_memory(new char[kAllocationSize]);
ProcessInfo info;
info.Initialize(GetCurrentProcess());
EXPECT_TRUE(
info.LoggingRangeIsFullyReadable(CheckedRange<WinVMAddress, WinVMSize>(
FromPointerCast<WinVMAddress>(safe_memory.get()), kAllocationSize)));
EXPECT_FALSE(info.LoggingRangeIsFullyReadable(
CheckedRange<WinVMAddress, WinVMSize>(0, 1024)));
}
} // namespace
} // namespace test
} // namespace crashpad