mirror of
https://github.com/chromium/crashpad.git
synced 2024-12-28 15:50:26 +08:00
48b1964d1b
implicit_cast<> only performs a cast in cases where an implicit conversion would be possible. It’s even safer than static_cast<> It’s an “explicit implicit” cast, which is not normally necsesary, but is frequently required when working with the ?: operator, functions like std::min() and std::max(), and logging and testing macros. The public style guide does not mention implicit_cast<> only because it is not part of the standard library, but would otherwise require it in these situations. Since base does provide implicit_cast<>, it should be used whenever possible. The only uses of static_cast<> not converted to implicit_cast<> are those that require static_cast<>, such as those that assign an integer constant to a variable of an enum type. R=rsesek@chromium.org Review URL: https://codereview.chromium.org/700383007
149 lines
5.7 KiB
C++
149 lines
5.7 KiB
C++
// Copyright 2014 The Crashpad Authors. All rights reserved.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
#include "client/capture_context_mac.h"
|
||
|
||
#include <mach/mach.h>
|
||
#include <stdint.h>
|
||
|
||
#include <algorithm>
|
||
|
||
#include "base/basictypes.h"
|
||
#include "build/build_config.h"
|
||
#include "gtest/gtest.h"
|
||
|
||
namespace crashpad {
|
||
namespace test {
|
||
namespace {
|
||
|
||
// If the context structure has fields that tell whether it’s valid, such as
|
||
// magic numbers or size fields, sanity-checks those fields for validity with
|
||
// fatal gtest assertions. For other fields, where it’s possible to reason about
|
||
// their validity based solely on their contents, sanity-checks via nonfatal
|
||
// gtest assertions.
|
||
void SanityCheckContext(NativeCPUContext* context) {
|
||
#if defined(ARCH_CPU_X86)
|
||
ASSERT_EQ(x86_THREAD_STATE32, context->tsh.flavor);
|
||
ASSERT_EQ(implicit_cast<int>(x86_THREAD_STATE32_COUNT), context->tsh.count);
|
||
#elif defined(ARCH_CPU_X86_64)
|
||
ASSERT_EQ(x86_THREAD_STATE64, context->tsh.flavor);
|
||
ASSERT_EQ(implicit_cast<int>(x86_THREAD_STATE64_COUNT), context->tsh.count);
|
||
#endif
|
||
|
||
#if defined(ARCH_CPU_X86_FAMILY)
|
||
// The segment registers are only capable of storing 16-bit quantities, but
|
||
// the context structure provides native integer-width fields for them. Ensure
|
||
// that the high bits are all clear.
|
||
//
|
||
// Many bit positions in the flags register are reserved and will always read
|
||
// a known value. Most reservd bits are always 0, but bit 1 is always 1. Check
|
||
// that the reserved bits are all set to their expected values. Note that the
|
||
// set of reserved bits may be relaxed over time with newer CPUs, and that
|
||
// this test may need to be changed to reflect these developments. The current
|
||
// set of reserved bits are 1, 3, 5, 15, and 22 and higher. See Intel Software
|
||
// Developer’s Manual, Volume 1: Basic Architecture (253665-051), 3.4.3
|
||
// “EFLAGS Register”, and AMD Architecture Programmer’s Manual, Volume 2:
|
||
// System Programming (24593-3.24), 3.1.6 “RFLAGS Register”.
|
||
#if defined(ARCH_CPU_X86)
|
||
EXPECT_EQ(0u, context->uts.ts32.__cs & ~0xffff);
|
||
EXPECT_EQ(0u, context->uts.ts32.__ds & ~0xffff);
|
||
EXPECT_EQ(0u, context->uts.ts32.__es & ~0xffff);
|
||
EXPECT_EQ(0u, context->uts.ts32.__fs & ~0xffff);
|
||
EXPECT_EQ(0u, context->uts.ts32.__gs & ~0xffff);
|
||
EXPECT_EQ(0u, context->uts.ts32.__ss & ~0xffff);
|
||
EXPECT_EQ(2u, context->uts.ts32.__eflags & 0xffc0802a);
|
||
#elif defined(ARCH_CPU_X86_64)
|
||
EXPECT_EQ(0u, context->uts.ts64.__cs & ~UINT64_C(0xffff));
|
||
EXPECT_EQ(0u, context->uts.ts64.__fs & ~UINT64_C(0xffff));
|
||
EXPECT_EQ(0u, context->uts.ts64.__gs & ~UINT64_C(0xffff));
|
||
EXPECT_EQ(2u, context->uts.ts64.__rflags & UINT64_C(0xffffffffffc0802a));
|
||
#endif
|
||
#endif
|
||
}
|
||
|
||
// A CPU-independent function to return the program counter.
|
||
uintptr_t ProgramCounterFromContext(NativeCPUContext* context) {
|
||
#if defined(ARCH_CPU_X86)
|
||
return context->uts.ts32.__eip;
|
||
#elif defined(ARCH_CPU_X86_64)
|
||
return context->uts.ts64.__rip;
|
||
#endif
|
||
}
|
||
|
||
// A CPU-independent function to return the stack pointer.
|
||
uintptr_t StackPointerFromContext(NativeCPUContext* context) {
|
||
#if defined(ARCH_CPU_X86)
|
||
return context->uts.ts32.__esp;
|
||
#elif defined(ARCH_CPU_X86_64)
|
||
return context->uts.ts64.__rsp;
|
||
#endif
|
||
}
|
||
|
||
void TestCaptureContext() {
|
||
NativeCPUContext context_1;
|
||
CaptureContext(&context_1);
|
||
|
||
{
|
||
SCOPED_TRACE("context_1");
|
||
ASSERT_NO_FATAL_FAILURE(SanityCheckContext(&context_1));
|
||
}
|
||
|
||
// The program counter reference value is this function’s address. The
|
||
// captured program counter should be slightly greater than or equal to the
|
||
// reference program counter.
|
||
const uintptr_t kReferencePC =
|
||
reinterpret_cast<uintptr_t>(TestCaptureContext);
|
||
uintptr_t pc = ProgramCounterFromContext(&context_1);
|
||
EXPECT_LT(pc - kReferencePC, 64u);
|
||
|
||
// Declare sp and context_2 here because all local variables need to be
|
||
// declared before computing the stack pointer reference value, so that the
|
||
// reference value can be the lowest value possible.
|
||
uintptr_t sp;
|
||
NativeCPUContext context_2;
|
||
|
||
// The stack pointer reference value is the lowest address of a local variable
|
||
// in this function. The captured program counter will be slightly less than
|
||
// or equal to the reference stack pointer.
|
||
const uintptr_t kReferenceSP =
|
||
std::min(std::min(reinterpret_cast<uintptr_t>(&context_1),
|
||
reinterpret_cast<uintptr_t>(&context_2)),
|
||
std::min(reinterpret_cast<uintptr_t>(&pc),
|
||
reinterpret_cast<uintptr_t>(&sp)));
|
||
sp = StackPointerFromContext(&context_1);
|
||
EXPECT_LT(kReferenceSP - sp, 512u);
|
||
|
||
// Capture the context again, expecting that the stack pointer stays the same
|
||
// and the program counter increases. Strictly speaking, there’s no guarantee
|
||
// that these conditions will hold, although they do for known compilers even
|
||
// under typical optimization.
|
||
CaptureContext(&context_2);
|
||
|
||
{
|
||
SCOPED_TRACE("context_2");
|
||
ASSERT_NO_FATAL_FAILURE(SanityCheckContext(&context_2));
|
||
}
|
||
|
||
EXPECT_EQ(sp, StackPointerFromContext(&context_2));
|
||
EXPECT_GT(ProgramCounterFromContext(&context_2), pc);
|
||
}
|
||
|
||
TEST(CaptureContextMac, CaptureContext) {
|
||
ASSERT_NO_FATAL_FAILURE(TestCaptureContext());
|
||
}
|
||
|
||
} // namespace
|
||
} // namespace test
|
||
} // namespace crashpad
|