crashpad/snapshot/linux/process_reader_linux.cc
Thomas Gales 4f5dd67229 [riscv] Add RISC-V Linux support
Only RV64GC is supported.

Bug: fuchsia:127655

Tested: `python build/run_tests.py` on RISC-V emulator
Tested: Created minidump via self-induced crash on RISC-V emulator,
ran through Breakpad stackwalker

Change-Id: I713797cd623b0a758269048e01696cbce502ca6c
Reviewed-on: https://chromium-review.googlesource.com/c/crashpad/crashpad/+/4581050
Reviewed-by: Joshua Peraza <jperaza@chromium.org>
2023-06-12 21:13:24 +00:00

565 lines
17 KiB
C++

// Copyright 2017 The Crashpad Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "snapshot/linux/process_reader_linux.h"
#include <elf.h>
#include <errno.h>
#include <sched.h>
#include <string.h>
#include <sys/resource.h>
#include <unistd.h>
#include <algorithm>
#include "base/logging.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "snapshot/linux/debug_rendezvous.h"
#include "util/linux/auxiliary_vector.h"
#include "util/linux/proc_stat_reader.h"
#if BUILDFLAG(IS_ANDROID)
#include <android/api-level.h>
#endif
namespace crashpad {
namespace {
bool ShouldMergeStackMappings(const MemoryMap::Mapping& stack_mapping,
const MemoryMap::Mapping& adj_mapping) {
DCHECK(stack_mapping.readable);
return adj_mapping.readable && stack_mapping.device == adj_mapping.device &&
stack_mapping.inode == adj_mapping.inode &&
(stack_mapping.name == adj_mapping.name ||
stack_mapping.name.empty() || adj_mapping.name.empty());
}
} // namespace
ProcessReaderLinux::Thread::Thread()
: thread_info(),
stack_region_address(0),
stack_region_size(0),
name(),
tid(-1),
static_priority(-1),
nice_value(-1) {}
ProcessReaderLinux::Thread::~Thread() {}
bool ProcessReaderLinux::Thread::InitializePtrace(
PtraceConnection* connection) {
if (!connection->GetThreadInfo(tid, &thread_info)) {
return false;
}
// From man proc(5):
//
// /proc/[pid]/comm (since Linux 2.6.33)
//
// Different threads in the same process may have different comm values,
// accessible via /proc/[pid]/task/[tid]/comm.
const std::string path = base::StringPrintf(
"/proc/%d/task/%d/comm", connection->GetProcessID(), tid);
if (connection->ReadFileContents(base::FilePath(path), &name)) {
if (!name.empty() && name.back() == '\n') {
// Remove the final newline character.
name.pop_back();
}
} else {
// Continue on without the thread name.
}
// TODO(jperaza): Collect scheduling priorities via the broker when they can't
// be collected directly.
have_priorities = false;
// TODO(jperaza): Starting with Linux 3.14, scheduling policy, static
// priority, and nice value can be collected all in one call with
// sched_getattr().
int res = sched_getscheduler(tid);
if (res < 0) {
PLOG(WARNING) << "sched_getscheduler";
return true;
}
sched_policy = res;
sched_param param;
if (sched_getparam(tid, &param) != 0) {
PLOG(WARNING) << "sched_getparam";
return true;
}
static_priority = param.sched_priority;
errno = 0;
res = getpriority(PRIO_PROCESS, tid);
if (res == -1 && errno) {
PLOG(WARNING) << "getpriority";
return true;
}
nice_value = res;
have_priorities = true;
return true;
}
void ProcessReaderLinux::Thread::InitializeStack(ProcessReaderLinux* reader) {
LinuxVMAddress stack_pointer;
#if defined(ARCH_CPU_X86_FAMILY)
stack_pointer = reader->Is64Bit() ? thread_info.thread_context.t64.rsp
: thread_info.thread_context.t32.esp;
#elif defined(ARCH_CPU_ARM_FAMILY)
stack_pointer = reader->Is64Bit() ? thread_info.thread_context.t64.sp
: thread_info.thread_context.t32.sp;
#elif defined(ARCH_CPU_MIPS_FAMILY)
stack_pointer = reader->Is64Bit() ? thread_info.thread_context.t64.regs[29]
: thread_info.thread_context.t32.regs[29];
#elif defined(ARCH_CPU_RISCV64)
stack_pointer = thread_info.thread_context.t64.regs[1];
#else
#error Port.
#endif
InitializeStackFromSP(reader, stack_pointer);
}
void ProcessReaderLinux::Thread::InitializeStackFromSP(
ProcessReaderLinux* reader,
LinuxVMAddress stack_pointer) {
const MemoryMap* memory_map = reader->GetMemoryMap();
// If we can't find the mapping, it's probably a bad stack pointer
const MemoryMap::Mapping* mapping = memory_map->FindMapping(stack_pointer);
if (!mapping) {
LOG(WARNING) << "no stack mapping";
return;
}
LinuxVMAddress stack_region_start =
reader->Memory()->PointerToAddress(stack_pointer);
// We've hit what looks like a guard page; skip to the end and check for a
// mapped stack region.
if (!mapping->readable) {
stack_region_start = mapping->range.End();
mapping = memory_map->FindMapping(stack_region_start);
if (!mapping) {
LOG(WARNING) << "no stack mapping";
return;
}
} else {
#if defined(ARCH_CPU_X86_FAMILY)
// Adjust start address to include the red zone
if (reader->Is64Bit()) {
constexpr LinuxVMSize kRedZoneSize = 128;
LinuxVMAddress red_zone_base =
stack_region_start - std::min(kRedZoneSize, stack_region_start);
// Only include the red zone if it is part of a valid mapping
if (red_zone_base >= mapping->range.Base()) {
stack_region_start = red_zone_base;
} else {
const MemoryMap::Mapping* rz_mapping =
memory_map->FindMapping(red_zone_base);
if (rz_mapping && ShouldMergeStackMappings(*mapping, *rz_mapping)) {
stack_region_start = red_zone_base;
} else {
stack_region_start = mapping->range.Base();
}
}
}
#endif
}
stack_region_address = stack_region_start;
// If there are more mappings at the end of this one, they may be a
// continuation of the stack.
LinuxVMAddress stack_end = mapping->range.End();
const MemoryMap::Mapping* next_mapping;
while ((next_mapping = memory_map->FindMapping(stack_end)) &&
ShouldMergeStackMappings(*mapping, *next_mapping)) {
stack_end = next_mapping->range.End();
}
// The main thread should have an entry in the maps file just for its stack,
// so we'll assume the base of the stack is at the end of the region. Other
// threads' stacks may not have their own entries in the maps file if they
// were user-allocated within a larger mapping, but pthreads places the TLS
// at the high-address end of the stack so we can try using that to shrink
// the stack region.
stack_region_size = stack_end - stack_region_address;
VMAddress tls_address = reader->Memory()->PointerToAddress(
thread_info.thread_specific_data_address);
if (tid != reader->ProcessID() && tls_address > stack_region_address &&
tls_address < stack_end) {
stack_region_size = tls_address - stack_region_address;
}
}
ProcessReaderLinux::Module::Module()
: name(), elf_reader(nullptr), type(ModuleSnapshot::kModuleTypeUnknown) {}
ProcessReaderLinux::Module::~Module() = default;
ProcessReaderLinux::ProcessReaderLinux()
: connection_(),
process_info_(),
memory_map_(),
threads_(),
modules_(),
elf_readers_(),
is_64_bit_(false),
initialized_threads_(false),
initialized_modules_(false),
initialized_() {}
ProcessReaderLinux::~ProcessReaderLinux() {}
bool ProcessReaderLinux::Initialize(PtraceConnection* connection) {
INITIALIZATION_STATE_SET_INITIALIZING(initialized_);
DCHECK(connection);
connection_ = connection;
if (!process_info_.InitializeWithPtrace(connection_)) {
return false;
}
if (!memory_map_.Initialize(connection_)) {
return false;
}
is_64_bit_ = process_info_.Is64Bit();
INITIALIZATION_STATE_SET_VALID(initialized_);
return true;
}
bool ProcessReaderLinux::StartTime(timeval* start_time) const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
return process_info_.StartTime(start_time);
}
bool ProcessReaderLinux::CPUTimes(timeval* user_time,
timeval* system_time) const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
timerclear(user_time);
timerclear(system_time);
timeval local_user_time;
timerclear(&local_user_time);
timeval local_system_time;
timerclear(&local_system_time);
for (const Thread& thread : threads_) {
ProcStatReader stat;
if (!stat.Initialize(connection_, thread.tid)) {
return false;
}
timeval thread_user_time;
if (!stat.UserCPUTime(&thread_user_time)) {
return false;
}
timeval thread_system_time;
if (!stat.SystemCPUTime(&thread_system_time)) {
return false;
}
timeradd(&local_user_time, &thread_user_time, &local_user_time);
timeradd(&local_system_time, &thread_system_time, &local_system_time);
}
*user_time = local_user_time;
*system_time = local_system_time;
return true;
}
const std::vector<ProcessReaderLinux::Thread>& ProcessReaderLinux::Threads() {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
if (!initialized_threads_) {
InitializeThreads();
}
return threads_;
}
const std::vector<ProcessReaderLinux::Module>& ProcessReaderLinux::Modules() {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
if (!initialized_modules_) {
InitializeModules();
}
return modules_;
}
void ProcessReaderLinux::InitializeAbortMessage() {
#if BUILDFLAG(IS_ANDROID)
const MemoryMap::Mapping* mapping =
memory_map_.FindMappingWithName("[anon:abort message]");
if (!mapping) {
return;
}
if (is_64_bit_) {
ReadAbortMessage<true>(mapping);
} else {
ReadAbortMessage<false>(mapping);
}
#endif
}
#if BUILDFLAG(IS_ANDROID)
// These structure definitions and the magic numbers below were copied from
// bionic/libc/bionic/android_set_abort_message.cpp
template <bool is64Bit>
struct abort_msg_t {
uint32_t size;
char msg[0];
};
template <>
struct abort_msg_t<true> {
uint64_t size;
char msg[0];
};
template <bool is64Bit>
struct magic_abort_msg_t {
uint64_t magic1;
uint64_t magic2;
abort_msg_t<is64Bit> msg;
};
template <bool is64Bit>
void ProcessReaderLinux::ReadAbortMessage(const MemoryMap::Mapping* mapping) {
magic_abort_msg_t<is64Bit> header;
if (!Memory()->Read(
mapping->range.Base(), sizeof(magic_abort_msg_t<is64Bit>), &header)) {
return;
}
size_t size = header.msg.size - sizeof(magic_abort_msg_t<is64Bit>) - 1;
if (header.magic1 != 0xb18e40886ac388f0ULL ||
header.magic2 != 0xc6dfba755a1de0b5ULL ||
mapping->range.Size() <
offsetof(magic_abort_msg_t<is64Bit>, msg.msg) + size) {
return;
}
abort_message_.resize(size);
if (!Memory()->Read(
mapping->range.Base() + offsetof(magic_abort_msg_t<is64Bit>, msg.msg),
size,
&abort_message_[0])) {
abort_message_.clear();
}
}
#endif // BUILDFLAG(IS_ANDROID)
const std::string& ProcessReaderLinux::AbortMessage() {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
if (abort_message_.empty()) {
InitializeAbortMessage();
}
return abort_message_;
}
void ProcessReaderLinux::InitializeThreads() {
DCHECK(threads_.empty());
initialized_threads_ = true;
pid_t pid = ProcessID();
if (pid == getpid()) {
// TODO(jperaza): ptrace can't be used on threads in the same thread group.
// Using clone to create a new thread in it's own thread group doesn't work
// because glibc doesn't support threads it didn't create via pthreads.
// Fork a new process to snapshot us and copy the data back?
LOG(ERROR) << "not implemented";
return;
}
Thread main_thread;
main_thread.tid = pid;
if (main_thread.InitializePtrace(connection_)) {
main_thread.InitializeStack(this);
threads_.push_back(main_thread);
} else {
LOG(WARNING) << "Couldn't initialize main thread.";
}
bool main_thread_found = false;
std::vector<pid_t> thread_ids;
bool result = connection_->Threads(&thread_ids);
DCHECK(result);
for (pid_t tid : thread_ids) {
if (tid == pid) {
DCHECK(!main_thread_found);
main_thread_found = true;
continue;
}
Thread thread;
thread.tid = tid;
if (connection_->Attach(tid) && thread.InitializePtrace(connection_)) {
thread.InitializeStack(this);
threads_.push_back(thread);
}
}
DCHECK(main_thread_found);
}
void ProcessReaderLinux::InitializeModules() {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
initialized_modules_ = true;
AuxiliaryVector aux;
if (!aux.Initialize(connection_)) {
return;
}
LinuxVMAddress phdrs;
if (!aux.GetValue(AT_PHDR, &phdrs)) {
return;
}
ProcessMemoryRange range;
if (!range.Initialize(Memory(), is_64_bit_)) {
return;
}
// The strategy used for identifying loaded modules depends on ELF files
// conventionally loading their header and program headers into memory.
// Locating the correct module could fail if the headers aren't mapped, are
// mapped at an unexpected location, or if there are other mappings
// constructed to look like the ELF module being searched for.
const MemoryMap::Mapping* exe_mapping = nullptr;
std::unique_ptr<ElfImageReader> exe_reader;
{
const MemoryMap::Mapping* phdr_mapping = memory_map_.FindMapping(phdrs);
if (!phdr_mapping) {
return;
}
auto possible_mappings =
memory_map_.FindFilePossibleMmapStarts(*phdr_mapping);
const MemoryMap::Mapping* mapping = nullptr;
while ((mapping = possible_mappings->Next())) {
auto parsed_exe = std::make_unique<ElfImageReader>();
if (parsed_exe->Initialize(
range,
mapping->range.Base(),
/* verbose= */ possible_mappings->Count() == 0) &&
parsed_exe->GetProgramHeaderTableAddress() == phdrs) {
exe_mapping = mapping;
exe_reader = std::move(parsed_exe);
break;
}
}
if (!exe_mapping) {
LOG(ERROR) << "no exe mappings 0x" << std::hex
<< phdr_mapping->range.Base();
return;
}
}
LinuxVMAddress debug_address;
if (!exe_reader->GetDebugAddress(&debug_address)) {
return;
}
DebugRendezvous debug;
if (!debug.Initialize(range, debug_address)) {
return;
}
Module exe = {};
exe.name = !debug.Executable()->name.empty() ? debug.Executable()->name
: exe_mapping->name;
exe.elf_reader = exe_reader.get();
exe.type = ModuleSnapshot::ModuleType::kModuleTypeExecutable;
modules_.push_back(exe);
elf_readers_.push_back(std::move(exe_reader));
LinuxVMAddress loader_base = 0;
aux.GetValue(AT_BASE, &loader_base);
for (const DebugRendezvous::LinkEntry& entry : debug.Modules()) {
const MemoryMap::Mapping* module_mapping = nullptr;
std::unique_ptr<ElfImageReader> elf_reader;
{
const MemoryMap::Mapping* dyn_mapping =
memory_map_.FindMapping(entry.dynamic_array);
if (!dyn_mapping) {
continue;
}
#if BUILDFLAG(IS_ANDROID)
// Beginning at API 21, Bionic provides android_dlopen_ext() which allows
// passing a file descriptor with an existing relro segment to the loader.
// This means that the mapping attributes of dyn_mapping may be unrelated
// to the attributes of the other mappings for the module. In this case,
// search all mappings in reverse order from dyn_mapping until a module is
// parsed whose dynamic address matches the value in the debug link.
static int api_level = android_get_device_api_level();
auto possible_mappings =
(api_level >= 21 || api_level < 0)
? memory_map_.ReverseIteratorFrom(*dyn_mapping)
: memory_map_.FindFilePossibleMmapStarts(*dyn_mapping);
#else
auto possible_mappings =
memory_map_.FindFilePossibleMmapStarts(*dyn_mapping);
#endif
const MemoryMap::Mapping* mapping = nullptr;
while ((mapping = possible_mappings->Next())) {
auto parsed_module = std::make_unique<ElfImageReader>();
VMAddress dynamic_address;
if (parsed_module->Initialize(
range,
mapping->range.Base(),
/* verbose= */ possible_mappings->Count() == 0) &&
parsed_module->GetDynamicArrayAddress(&dynamic_address) &&
dynamic_address == entry.dynamic_array) {
module_mapping = mapping;
elf_reader = std::move(parsed_module);
break;
}
}
if (!module_mapping) {
LOG(ERROR) << "no module mappings 0x" << std::hex
<< dyn_mapping->range.Base();
continue;
}
}
Module module = {};
std::string soname;
if (elf_reader->SoName(&soname) && !soname.empty()) {
module.name = soname;
} else {
module.name = !entry.name.empty() ? entry.name : module_mapping->name;
}
module.elf_reader = elf_reader.get();
module.type = loader_base && elf_reader->Address() == loader_base
? ModuleSnapshot::kModuleTypeDynamicLoader
: ModuleSnapshot::kModuleTypeSharedLibrary;
modules_.push_back(module);
elf_readers_.push_back(std::move(elf_reader));
}
}
} // namespace crashpad