mirror of
https://github.com/chromium/crashpad.git
synced 2025-01-22 07:29:36 +08:00
6dac7ecdf5
This is essentially based on a search for “^ *const [^*&]*=[^(]*$” Change-Id: Id571119d0b9a64c6f387eccd51cea7c9eb530e13 Reviewed-on: https://chromium-review.googlesource.com/585555 Reviewed-by: Leonard Mosescu <mosescu@chromium.org>
579 lines
22 KiB
C++
579 lines
22 KiB
C++
// Copyright 2014 The Crashpad Authors. All rights reserved.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
#include "util/mach/task_memory.h"
|
||
|
||
#include <mach/mach.h>
|
||
#include <string.h>
|
||
|
||
#include <algorithm>
|
||
#include <memory>
|
||
#include <string>
|
||
|
||
#include "base/mac/scoped_mach_port.h"
|
||
#include "base/mac/scoped_mach_vm.h"
|
||
#include "gtest/gtest.h"
|
||
#include "test/mac/mach_errors.h"
|
||
#include "util/misc/from_pointer_cast.h"
|
||
|
||
namespace crashpad {
|
||
namespace test {
|
||
namespace {
|
||
|
||
TEST(TaskMemory, ReadSelf) {
|
||
vm_address_t address = 0;
|
||
constexpr vm_size_t kSize = 4 * PAGE_SIZE;
|
||
kern_return_t kr =
|
||
vm_allocate(mach_task_self(), &address, kSize, VM_FLAGS_ANYWHERE);
|
||
ASSERT_EQ(kr, KERN_SUCCESS) << MachErrorMessage(kr, "vm_allocate");
|
||
base::mac::ScopedMachVM vm_owner(address, mach_vm_round_page(kSize));
|
||
|
||
char* region = reinterpret_cast<char*>(address);
|
||
for (size_t index = 0; index < kSize; ++index) {
|
||
region[index] = (index % 256) ^ ((index >> 8) % 256);
|
||
}
|
||
|
||
TaskMemory memory(mach_task_self());
|
||
|
||
// This tests using both the Read() and ReadMapped() interfaces.
|
||
std::string result(kSize, '\0');
|
||
std::unique_ptr<TaskMemory::MappedMemory> mapped;
|
||
|
||
// Ensure that the entire region can be read.
|
||
ASSERT_TRUE(memory.Read(address, kSize, &result[0]));
|
||
EXPECT_EQ(memcmp(region, &result[0], kSize), 0);
|
||
ASSERT_TRUE((mapped = memory.ReadMapped(address, kSize)));
|
||
EXPECT_EQ(memcmp(region, mapped->data(), kSize), 0);
|
||
|
||
// Ensure that a read of length 0 succeeds and doesn’t touch the result.
|
||
result.assign(kSize, '\0');
|
||
std::string zeroes = result;
|
||
ASSERT_TRUE(memory.Read(address, 0, &result[0]));
|
||
EXPECT_EQ(result, zeroes);
|
||
ASSERT_TRUE((mapped = memory.ReadMapped(address, 0)));
|
||
|
||
// Ensure that a read starting at an unaligned address works.
|
||
ASSERT_TRUE(memory.Read(address + 1, kSize - 1, &result[0]));
|
||
EXPECT_EQ(memcmp(region + 1, &result[0], kSize - 1), 0);
|
||
ASSERT_TRUE((mapped = memory.ReadMapped(address + 1, kSize - 1)));
|
||
EXPECT_EQ(memcmp(region + 1, mapped->data(), kSize - 1), 0);
|
||
|
||
// Ensure that a read ending at an unaligned address works.
|
||
ASSERT_TRUE(memory.Read(address, kSize - 1, &result[0]));
|
||
EXPECT_EQ(memcmp(region, &result[0], kSize - 1), 0);
|
||
ASSERT_TRUE((mapped = memory.ReadMapped(address, kSize - 1)));
|
||
EXPECT_EQ(memcmp(region, mapped->data(), kSize - 1), 0);
|
||
|
||
// Ensure that a read starting and ending at unaligned addresses works.
|
||
ASSERT_TRUE(memory.Read(address + 1, kSize - 2, &result[0]));
|
||
EXPECT_EQ(memcmp(region + 1, &result[0], kSize - 2), 0);
|
||
ASSERT_TRUE((mapped = memory.ReadMapped(address + 1, kSize - 2)));
|
||
EXPECT_EQ(memcmp(region + 1, mapped->data(), kSize - 2), 0);
|
||
|
||
// Ensure that a read of exactly one page works.
|
||
ASSERT_TRUE(memory.Read(address + PAGE_SIZE, PAGE_SIZE, &result[0]));
|
||
EXPECT_EQ(memcmp(region + PAGE_SIZE, &result[0], PAGE_SIZE), 0);
|
||
ASSERT_TRUE((mapped = memory.ReadMapped(address + PAGE_SIZE, PAGE_SIZE)));
|
||
EXPECT_EQ(memcmp(region + PAGE_SIZE, mapped->data(), PAGE_SIZE), 0);
|
||
|
||
// Ensure that a read of a single byte works.
|
||
ASSERT_TRUE(memory.Read(address + 2, 1, &result[0]));
|
||
EXPECT_EQ(result[0], region[2]);
|
||
ASSERT_TRUE((mapped = memory.ReadMapped(address + 2, 1)));
|
||
EXPECT_EQ(reinterpret_cast<const char*>(mapped->data())[0], region[2]);
|
||
|
||
// Ensure that a read of length zero works and doesn’t touch the data.
|
||
result[0] = 'M';
|
||
ASSERT_TRUE(memory.Read(address + 3, 0, &result[0]));
|
||
EXPECT_EQ(result[0], 'M');
|
||
ASSERT_TRUE((mapped = memory.ReadMapped(address + 3, 0)));
|
||
}
|
||
|
||
TEST(TaskMemory, ReadSelfUnmapped) {
|
||
vm_address_t address = 0;
|
||
constexpr vm_size_t kSize = 2 * PAGE_SIZE;
|
||
kern_return_t kr =
|
||
vm_allocate(mach_task_self(), &address, kSize, VM_FLAGS_ANYWHERE);
|
||
ASSERT_EQ(kr, KERN_SUCCESS) << MachErrorMessage(kr, "vm_allocate");
|
||
base::mac::ScopedMachVM vm_owner(address, mach_vm_round_page(kSize));
|
||
|
||
char* region = reinterpret_cast<char*>(address);
|
||
for (size_t index = 0; index < kSize; ++index) {
|
||
// Don’t include any NUL bytes, because ReadCString stops when it encounters
|
||
// a NUL.
|
||
region[index] = (index % 255) + 1;
|
||
}
|
||
|
||
kr = vm_protect(
|
||
mach_task_self(), address + PAGE_SIZE, PAGE_SIZE, FALSE, VM_PROT_NONE);
|
||
ASSERT_EQ(kr, KERN_SUCCESS) << MachErrorMessage(kr, "vm_protect");
|
||
|
||
TaskMemory memory(mach_task_self());
|
||
std::string result(kSize, '\0');
|
||
|
||
EXPECT_FALSE(memory.Read(address, kSize, &result[0]));
|
||
EXPECT_FALSE(memory.Read(address + 1, kSize - 1, &result[0]));
|
||
EXPECT_FALSE(memory.Read(address + PAGE_SIZE, 1, &result[0]));
|
||
EXPECT_FALSE(memory.Read(address + PAGE_SIZE - 1, 2, &result[0]));
|
||
EXPECT_TRUE(memory.Read(address, PAGE_SIZE, &result[0]));
|
||
EXPECT_TRUE(memory.Read(address + PAGE_SIZE - 1, 1, &result[0]));
|
||
|
||
// Do the same thing with the ReadMapped() interface.
|
||
std::unique_ptr<TaskMemory::MappedMemory> mapped;
|
||
EXPECT_FALSE((mapped = memory.ReadMapped(address, kSize)));
|
||
EXPECT_FALSE((mapped = memory.ReadMapped(address + 1, kSize - 1)));
|
||
EXPECT_FALSE((mapped = memory.ReadMapped(address + PAGE_SIZE, 1)));
|
||
EXPECT_FALSE((mapped = memory.ReadMapped(address + PAGE_SIZE - 1, 2)));
|
||
EXPECT_TRUE((mapped = memory.ReadMapped(address, PAGE_SIZE)));
|
||
EXPECT_TRUE((mapped = memory.ReadMapped(address + PAGE_SIZE - 1, 1)));
|
||
|
||
// Repeat the test with an unmapped page instead of an unreadable one. This
|
||
// portion of the test may be flaky in the presence of other threads, if
|
||
// another thread maps something in the region that is deallocated here.
|
||
kr = vm_deallocate(mach_task_self(), address + PAGE_SIZE, PAGE_SIZE);
|
||
ASSERT_EQ(kr, KERN_SUCCESS) << MachErrorMessage(kr, "vm_deallocate");
|
||
vm_owner.reset(address, PAGE_SIZE);
|
||
|
||
EXPECT_FALSE(memory.Read(address, kSize, &result[0]));
|
||
EXPECT_FALSE(memory.Read(address + 1, kSize - 1, &result[0]));
|
||
EXPECT_FALSE(memory.Read(address + PAGE_SIZE, 1, &result[0]));
|
||
EXPECT_FALSE(memory.Read(address + PAGE_SIZE - 1, 2, &result[0]));
|
||
EXPECT_TRUE(memory.Read(address, PAGE_SIZE, &result[0]));
|
||
EXPECT_TRUE(memory.Read(address + PAGE_SIZE - 1, 1, &result[0]));
|
||
|
||
// Do the same thing with the ReadMapped() interface.
|
||
EXPECT_FALSE((mapped = memory.ReadMapped(address, kSize)));
|
||
EXPECT_FALSE((mapped = memory.ReadMapped(address + 1, kSize - 1)));
|
||
EXPECT_FALSE((mapped = memory.ReadMapped(address + PAGE_SIZE, 1)));
|
||
EXPECT_FALSE((mapped = memory.ReadMapped(address + PAGE_SIZE - 1, 2)));
|
||
EXPECT_TRUE((mapped = memory.ReadMapped(address, PAGE_SIZE)));
|
||
EXPECT_TRUE((mapped = memory.ReadMapped(address + PAGE_SIZE - 1, 1)));
|
||
}
|
||
|
||
// This function consolidates the cast from a char* to mach_vm_address_t in one
|
||
// location when reading from the current task.
|
||
bool ReadCStringSelf(TaskMemory* memory,
|
||
const char* pointer,
|
||
std::string* result) {
|
||
return memory->ReadCString(FromPointerCast<mach_vm_address_t>(pointer),
|
||
result);
|
||
}
|
||
|
||
TEST(TaskMemory, ReadCStringSelf) {
|
||
TaskMemory memory(mach_task_self());
|
||
std::string result;
|
||
|
||
const char kConstCharEmpty[] = "";
|
||
ASSERT_TRUE(ReadCStringSelf(&memory, kConstCharEmpty, &result));
|
||
EXPECT_TRUE(result.empty());
|
||
EXPECT_EQ(result, kConstCharEmpty);
|
||
|
||
const char kConstCharShort[] = "A short const char[]";
|
||
ASSERT_TRUE(ReadCStringSelf(&memory, kConstCharShort, &result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result, kConstCharShort);
|
||
|
||
static const char kStaticConstCharEmpty[] = "";
|
||
ASSERT_TRUE(ReadCStringSelf(&memory, kStaticConstCharEmpty, &result));
|
||
EXPECT_TRUE(result.empty());
|
||
EXPECT_EQ(result, kStaticConstCharEmpty);
|
||
|
||
static const char kStaticConstCharShort[] = "A short static const char[]";
|
||
ASSERT_TRUE(ReadCStringSelf(&memory, kStaticConstCharShort, &result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result, kStaticConstCharShort);
|
||
|
||
constexpr char kConstexprCharEmpty[] = "";
|
||
ASSERT_TRUE(ReadCStringSelf(&memory, kConstexprCharEmpty, &result));
|
||
EXPECT_TRUE(result.empty());
|
||
EXPECT_EQ(result, kConstexprCharEmpty);
|
||
|
||
constexpr char kConstexprCharShort[] = "A short constexpr char[]";
|
||
ASSERT_TRUE(ReadCStringSelf(&memory, kConstexprCharShort, &result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result, kConstexprCharShort);
|
||
|
||
static constexpr char kStaticConstexprCharEmpty[] = "";
|
||
ASSERT_TRUE(ReadCStringSelf(&memory, kStaticConstexprCharEmpty, &result));
|
||
EXPECT_TRUE(result.empty());
|
||
EXPECT_EQ(result, kStaticConstexprCharEmpty);
|
||
|
||
static constexpr char kStaticConstexprCharShort[] =
|
||
"A short static constexpr char[]";
|
||
ASSERT_TRUE(ReadCStringSelf(&memory, kStaticConstexprCharShort, &result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result, kStaticConstexprCharShort);
|
||
|
||
std::string string_short("A short std::string in a function");
|
||
ASSERT_TRUE(ReadCStringSelf(&memory, &string_short[0], &result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result, string_short);
|
||
|
||
std::string string_long;
|
||
constexpr size_t kStringLongSize = 4 * PAGE_SIZE;
|
||
for (size_t index = 0; index < kStringLongSize; ++index) {
|
||
// Don’t include any NUL bytes, because ReadCString stops when it encounters
|
||
// a NUL.
|
||
string_long.append(1, (index % 255) + 1);
|
||
}
|
||
ASSERT_EQ(string_long.size(), kStringLongSize);
|
||
ASSERT_TRUE(ReadCStringSelf(&memory, &string_long[0], &result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result.size(), kStringLongSize);
|
||
EXPECT_EQ(result, string_long);
|
||
}
|
||
|
||
TEST(TaskMemory, ReadCStringSelfUnmapped) {
|
||
vm_address_t address = 0;
|
||
constexpr vm_size_t kSize = 2 * PAGE_SIZE;
|
||
kern_return_t kr =
|
||
vm_allocate(mach_task_self(), &address, kSize, VM_FLAGS_ANYWHERE);
|
||
ASSERT_EQ(kr, KERN_SUCCESS) << MachErrorMessage(kr, "vm_allocate");
|
||
base::mac::ScopedMachVM vm_owner(address, mach_vm_round_page(kSize));
|
||
|
||
char* region = reinterpret_cast<char*>(address);
|
||
for (size_t index = 0; index < kSize; ++index) {
|
||
// Don’t include any NUL bytes, because ReadCString stops when it encounters
|
||
// a NUL.
|
||
region[index] = (index % 255) + 1;
|
||
}
|
||
|
||
kr = vm_protect(
|
||
mach_task_self(), address + PAGE_SIZE, PAGE_SIZE, FALSE, VM_PROT_NONE);
|
||
ASSERT_EQ(kr, KERN_SUCCESS) << MachErrorMessage(kr, "vm_protect");
|
||
|
||
TaskMemory memory(mach_task_self());
|
||
std::string result;
|
||
EXPECT_FALSE(memory.ReadCString(address, &result));
|
||
|
||
// Make sure that if the string is NUL-terminated within the mapped memory
|
||
// region, it can be read properly.
|
||
char terminator_or_not = '\0';
|
||
std::swap(region[PAGE_SIZE - 1], terminator_or_not);
|
||
ASSERT_TRUE(memory.ReadCString(address, &result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result.size(), PAGE_SIZE - 1u);
|
||
EXPECT_EQ(result, region);
|
||
|
||
// Repeat the test with an unmapped page instead of an unreadable one. This
|
||
// portion of the test may be flaky in the presence of other threads, if
|
||
// another thread maps something in the region that is deallocated here.
|
||
std::swap(region[PAGE_SIZE - 1], terminator_or_not);
|
||
kr = vm_deallocate(mach_task_self(), address + PAGE_SIZE, PAGE_SIZE);
|
||
ASSERT_EQ(kr, KERN_SUCCESS) << MachErrorMessage(kr, "vm_deallocate");
|
||
vm_owner.reset(address, PAGE_SIZE);
|
||
|
||
EXPECT_FALSE(memory.ReadCString(address, &result));
|
||
|
||
// Clear the result before testing that the string can be read. This makes
|
||
// sure that the result is actually filled in, because it already contains the
|
||
// expected value from the tests above.
|
||
result.clear();
|
||
std::swap(region[PAGE_SIZE - 1], terminator_or_not);
|
||
ASSERT_TRUE(memory.ReadCString(address, &result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result.size(), PAGE_SIZE - 1u);
|
||
EXPECT_EQ(result, region);
|
||
}
|
||
|
||
// This function consolidates the cast from a char* to mach_vm_address_t in one
|
||
// location when reading from the current task.
|
||
bool ReadCStringSizeLimitedSelf(TaskMemory* memory,
|
||
const char* pointer,
|
||
size_t size,
|
||
std::string* result) {
|
||
return memory->ReadCStringSizeLimited(
|
||
FromPointerCast<mach_vm_address_t>(pointer), size, result);
|
||
}
|
||
|
||
TEST(TaskMemory, ReadCStringSizeLimited_ConstCharEmpty) {
|
||
TaskMemory memory(mach_task_self());
|
||
std::string result;
|
||
|
||
static constexpr char kConstCharEmpty[] = "";
|
||
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
|
||
&memory, kConstCharEmpty, arraysize(kConstCharEmpty), &result));
|
||
EXPECT_TRUE(result.empty());
|
||
EXPECT_EQ(result, kConstCharEmpty);
|
||
|
||
result.clear();
|
||
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
|
||
&memory, kConstCharEmpty, arraysize(kConstCharEmpty) + 1, &result));
|
||
EXPECT_TRUE(result.empty());
|
||
EXPECT_EQ(result, kConstCharEmpty);
|
||
|
||
result.clear();
|
||
ASSERT_TRUE(ReadCStringSizeLimitedSelf(&memory, kConstCharEmpty, 0, &result));
|
||
EXPECT_TRUE(result.empty());
|
||
EXPECT_EQ(result, kConstCharEmpty);
|
||
}
|
||
|
||
TEST(TaskMemory, ReadCStringSizeLimited_ConstCharShort) {
|
||
TaskMemory memory(mach_task_self());
|
||
std::string result;
|
||
|
||
static constexpr char kConstCharShort[] = "A short const char[]";
|
||
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
|
||
&memory, kConstCharShort, arraysize(kConstCharShort), &result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result, kConstCharShort);
|
||
|
||
result.clear();
|
||
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
|
||
&memory, kConstCharShort, arraysize(kConstCharShort) + 1, &result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result, kConstCharShort);
|
||
|
||
ASSERT_FALSE(ReadCStringSizeLimitedSelf(
|
||
&memory, kConstCharShort, arraysize(kConstCharShort) - 1, &result));
|
||
}
|
||
|
||
TEST(TaskMemory, ReadCStringSizeLimited_StaticConstCharEmpty) {
|
||
TaskMemory memory(mach_task_self());
|
||
std::string result;
|
||
|
||
static constexpr char kStaticConstCharEmpty[] = "";
|
||
ASSERT_TRUE(ReadCStringSizeLimitedSelf(&memory,
|
||
kStaticConstCharEmpty,
|
||
arraysize(kStaticConstCharEmpty),
|
||
&result));
|
||
EXPECT_TRUE(result.empty());
|
||
EXPECT_EQ(result, kStaticConstCharEmpty);
|
||
|
||
result.clear();
|
||
ASSERT_TRUE(ReadCStringSizeLimitedSelf(&memory,
|
||
kStaticConstCharEmpty,
|
||
arraysize(kStaticConstCharEmpty) + 1,
|
||
&result));
|
||
EXPECT_TRUE(result.empty());
|
||
EXPECT_EQ(result, kStaticConstCharEmpty);
|
||
|
||
result.clear();
|
||
ASSERT_TRUE(
|
||
ReadCStringSizeLimitedSelf(&memory, kStaticConstCharEmpty, 0, &result));
|
||
EXPECT_TRUE(result.empty());
|
||
EXPECT_EQ(result, kStaticConstCharEmpty);
|
||
}
|
||
|
||
TEST(TaskMemory, ReadCStringSizeLimited_StaticConstCharShort) {
|
||
TaskMemory memory(mach_task_self());
|
||
std::string result;
|
||
|
||
static constexpr char kStaticConstCharShort[] =
|
||
"A short static constexpr char[]";
|
||
ASSERT_TRUE(ReadCStringSizeLimitedSelf(&memory,
|
||
kStaticConstCharShort,
|
||
arraysize(kStaticConstCharShort),
|
||
&result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result, kStaticConstCharShort);
|
||
|
||
result.clear();
|
||
ASSERT_TRUE(ReadCStringSizeLimitedSelf(&memory,
|
||
kStaticConstCharShort,
|
||
arraysize(kStaticConstCharShort) + 1,
|
||
&result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result, kStaticConstCharShort);
|
||
|
||
ASSERT_FALSE(ReadCStringSizeLimitedSelf(&memory,
|
||
kStaticConstCharShort,
|
||
arraysize(kStaticConstCharShort) - 1,
|
||
&result));
|
||
}
|
||
|
||
TEST(TaskMemory, ReadCStringSizeLimited_StringShort) {
|
||
TaskMemory memory(mach_task_self());
|
||
std::string result;
|
||
|
||
std::string string_short("A short std::string in a function");
|
||
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
|
||
&memory, &string_short[0], string_short.size() + 1, &result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result, string_short);
|
||
|
||
result.clear();
|
||
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
|
||
&memory, &string_short[0], string_short.size() + 2, &result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result, string_short);
|
||
|
||
ASSERT_FALSE(ReadCStringSizeLimitedSelf(
|
||
&memory, &string_short[0], string_short.size(), &result));
|
||
}
|
||
|
||
TEST(TaskMemory, ReadCStringSizeLimited_StringLong) {
|
||
TaskMemory memory(mach_task_self());
|
||
std::string result;
|
||
|
||
std::string string_long;
|
||
constexpr size_t kStringLongSize = 4 * PAGE_SIZE;
|
||
for (size_t index = 0; index < kStringLongSize; ++index) {
|
||
// Don’t include any NUL bytes, because ReadCString stops when it encounters
|
||
// a NUL.
|
||
string_long.append(1, (index % 255) + 1);
|
||
}
|
||
ASSERT_EQ(string_long.size(), kStringLongSize);
|
||
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
|
||
&memory, &string_long[0], string_long.size() + 1, &result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result.size(), kStringLongSize);
|
||
EXPECT_EQ(result, string_long);
|
||
|
||
result.clear();
|
||
ASSERT_TRUE(ReadCStringSizeLimitedSelf(
|
||
&memory, &string_long[0], string_long.size() + 2, &result));
|
||
EXPECT_FALSE(result.empty());
|
||
EXPECT_EQ(result.size(), kStringLongSize);
|
||
EXPECT_EQ(result, string_long);
|
||
|
||
ASSERT_FALSE(ReadCStringSizeLimitedSelf(
|
||
&memory, &string_long[0], string_long.size(), &result));
|
||
}
|
||
|
||
bool IsAddressMapped(vm_address_t address) {
|
||
vm_address_t region_address = address;
|
||
vm_size_t region_size;
|
||
mach_msg_type_number_t count = VM_REGION_BASIC_INFO_COUNT_64;
|
||
vm_region_basic_info_64 info;
|
||
mach_port_t object;
|
||
kern_return_t kr = vm_region_64(mach_task_self(),
|
||
®ion_address,
|
||
®ion_size,
|
||
VM_REGION_BASIC_INFO_64,
|
||
reinterpret_cast<vm_region_info_t>(&info),
|
||
&count,
|
||
&object);
|
||
if (kr == KERN_SUCCESS) {
|
||
// |object| will be MACH_PORT_NULL (10.9.4 xnu-2422.110.17/osfmk/vm/vm_map.c
|
||
// vm_map_region()), but the interface acts as if it might carry a send
|
||
// right, so treat it as documented.
|
||
base::mac::ScopedMachSendRight object_owner(object);
|
||
|
||
return address >= region_address && address <= region_address + region_size;
|
||
}
|
||
|
||
if (kr == KERN_INVALID_ADDRESS) {
|
||
return false;
|
||
}
|
||
|
||
ADD_FAILURE() << MachErrorMessage(kr, "vm_region_64");
|
||
return false;
|
||
}
|
||
|
||
TEST(TaskMemory, MappedMemoryDeallocates) {
|
||
// This tests that once a TaskMemory::MappedMemory object is destroyed, it
|
||
// releases the mapped memory that it owned. Technically, this test is not
|
||
// valid because after the mapping is released, something else (on another
|
||
// thread) might wind up mapped in the same address. In the test environment,
|
||
// hopefully there are either no other threads or they’re all quiescent, so
|
||
// nothing else should wind up mapped in the address.
|
||
|
||
TaskMemory memory(mach_task_self());
|
||
std::unique_ptr<TaskMemory::MappedMemory> mapped;
|
||
|
||
static constexpr char kTestBuffer[] = "hello!";
|
||
mach_vm_address_t test_address =
|
||
FromPointerCast<mach_vm_address_t>(&kTestBuffer);
|
||
ASSERT_TRUE((mapped = memory.ReadMapped(test_address, sizeof(kTestBuffer))));
|
||
EXPECT_EQ(memcmp(kTestBuffer, mapped->data(), sizeof(kTestBuffer)), 0);
|
||
|
||
vm_address_t mapped_address = reinterpret_cast<vm_address_t>(mapped->data());
|
||
EXPECT_TRUE(IsAddressMapped(mapped_address));
|
||
|
||
mapped.reset();
|
||
EXPECT_FALSE(IsAddressMapped(mapped_address));
|
||
|
||
// This is the same but with a big buffer that’s definitely larger than a
|
||
// single page. This makes sure that the whole mapped region winds up being
|
||
// deallocated.
|
||
constexpr size_t kBigSize = 4 * PAGE_SIZE;
|
||
std::unique_ptr<char[]> big_buffer(new char[kBigSize]);
|
||
test_address = FromPointerCast<mach_vm_address_t>(&big_buffer[0]);
|
||
ASSERT_TRUE((mapped = memory.ReadMapped(test_address, kBigSize)));
|
||
|
||
mapped_address = reinterpret_cast<vm_address_t>(mapped->data());
|
||
vm_address_t mapped_last_address = mapped_address + kBigSize - 1;
|
||
EXPECT_TRUE(IsAddressMapped(mapped_address));
|
||
EXPECT_TRUE(IsAddressMapped(mapped_address + PAGE_SIZE));
|
||
EXPECT_TRUE(IsAddressMapped(mapped_last_address));
|
||
|
||
mapped.reset();
|
||
EXPECT_FALSE(IsAddressMapped(mapped_address));
|
||
EXPECT_FALSE(IsAddressMapped(mapped_address + PAGE_SIZE));
|
||
EXPECT_FALSE(IsAddressMapped(mapped_last_address));
|
||
}
|
||
|
||
TEST(TaskMemory, MappedMemoryReadCString) {
|
||
// This tests the behavior of TaskMemory::MappedMemory::ReadCString().
|
||
TaskMemory memory(mach_task_self());
|
||
std::unique_ptr<TaskMemory::MappedMemory> mapped;
|
||
|
||
static constexpr char kTestBuffer[] = "0\0" "2\0" "45\0" "789";
|
||
const mach_vm_address_t kTestAddress =
|
||
FromPointerCast<mach_vm_address_t>(&kTestBuffer);
|
||
ASSERT_TRUE((mapped = memory.ReadMapped(kTestAddress, 10)));
|
||
|
||
std::string string;
|
||
ASSERT_TRUE(mapped->ReadCString(0, &string));
|
||
EXPECT_EQ(string, "0");
|
||
ASSERT_TRUE(mapped->ReadCString(1, &string));
|
||
EXPECT_EQ(string, "");
|
||
ASSERT_TRUE(mapped->ReadCString(2, &string));
|
||
EXPECT_EQ(string, "2");
|
||
ASSERT_TRUE(mapped->ReadCString(3, &string));
|
||
EXPECT_EQ(string, "");
|
||
ASSERT_TRUE(mapped->ReadCString(4, &string));
|
||
EXPECT_EQ(string, "45");
|
||
ASSERT_TRUE(mapped->ReadCString(5, &string));
|
||
EXPECT_EQ(string, "5");
|
||
ASSERT_TRUE(mapped->ReadCString(6, &string));
|
||
EXPECT_EQ(string, "");
|
||
|
||
// kTestBuffer’s NUL terminator was not read, so these will see an
|
||
// unterminated string and fail.
|
||
EXPECT_FALSE(mapped->ReadCString(7, &string));
|
||
EXPECT_FALSE(mapped->ReadCString(8, &string));
|
||
EXPECT_FALSE(mapped->ReadCString(9, &string));
|
||
|
||
// This is out of the range of what was read, so it will fail.
|
||
EXPECT_FALSE(mapped->ReadCString(10, &string));
|
||
EXPECT_FALSE(mapped->ReadCString(11, &string));
|
||
|
||
// Read it again, this time with a length long enough to include the NUL
|
||
// terminator.
|
||
ASSERT_TRUE((mapped = memory.ReadMapped(kTestAddress, 11)));
|
||
|
||
ASSERT_TRUE(mapped->ReadCString(6, &string));
|
||
EXPECT_EQ(string, "");
|
||
|
||
// These should now succeed.
|
||
ASSERT_TRUE(mapped->ReadCString(7, &string));
|
||
EXPECT_EQ(string, "789");
|
||
ASSERT_TRUE(mapped->ReadCString(8, &string));
|
||
EXPECT_EQ(string, "89");
|
||
ASSERT_TRUE(mapped->ReadCString(9, &string));
|
||
EXPECT_EQ(string, "9");
|
||
EXPECT_TRUE(mapped->ReadCString(10, &string));
|
||
EXPECT_EQ(string, "");
|
||
|
||
// These are still out of range.
|
||
EXPECT_FALSE(mapped->ReadCString(11, &string));
|
||
EXPECT_FALSE(mapped->ReadCString(12, &string));
|
||
}
|
||
|
||
} // namespace
|
||
} // namespace test
|
||
} // namespace crashpad
|