crashpad/util/win/registration_protocol_win.cc
Scott Graham 76ef9b5c2b win: Address failure-to-start-handler case for async startup
Second follow up to https://chromium-review.googlesource.com/c/400015/

The ideal would be that if we fail to start the handler, then we don't
end up passing through our unhandled exception filter at all.

In the case of the non-initial client (i.e. renderers) we can do this by
not setting our UnhandledExceptionFilter until after we know we've
connected successfully (because those connections are synchronous from
its point of view). We also change WaitForNamedPipe in the connection
message to block forever, so as long as the precreated pipe exists,
they'll wait to connect. After the initial client has passed the server
side of that pipe to the handler, the handler has the only handle to it.
So, if the handler has disappeared for whatever reason, pipe-connecting
clients will fail with FILE_NOT_FOUND, and will not stick around in the
connection loop. This means non-initial clients do not need additional
logic to avoid getting stuck in our UnhandledExceptionFilter.

For the initial client, it would be ideal to avoid passing through our
UEF too, but none of the 3 options are great:
1. Block until we find out if we started, and then install the filter.
   We don't want to do that, because we don't want to wait.
2. Restore the old filter if it turns out we failed to start. We can't
   do that because Chrome disables ::SetUnhandledExceptionFilter()
   immediately after StartHandler/SetHandlerIPCPipe returns.
3. Don't install our filter until we've successfully started. We don't
   want to do that because we'd miss early crashes, negating the benefit
   of deferred startup.

So, we do need to pass through our UnhandledExceptionFilter. I don't
want more Win32 API calls during the vulnerable filter function. So, at
any point during async startup where there's a failure, set a global
atomic that allows the filter function to abort without trying to signal
a handler that's known to not exist.

One further improvement we might want to look at is unexpected
termination of the handler (as opposed to a failure to start) which
would still result in a useless Sleep(60s). This isn't new behaviour,
but now we have a clear thing to do if we detect the handler is gone.

(Also a missing DWORD/size_t cast for the _x64 bots.)

R=mark@chromium.org
BUG=chromium:567850,chromium:656800

Change-Id: I5be831ca39bd8b2e5c962b9647c8bd469e2be878
Reviewed-on: https://chromium-review.googlesource.com/400985
Reviewed-by: Mark Mentovai <mark@chromium.org>
2016-11-02 21:39:52 +00:00

140 lines
5.0 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2015 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "util/win/registration_protocol_win.h"
#include <windows.h>
#include <sddl.h>
#include "base/logging.h"
#include "util/win/exception_handler_server.h"
#include "util/win/scoped_handle.h"
#include "util/win/scoped_local_alloc.h"
namespace crashpad {
bool SendToCrashHandlerServer(const base::string16& pipe_name,
const ClientToServerMessage& message,
ServerToClientMessage* response) {
// Retry CreateFile() in a loop. If the handler isnt actively waiting in
// ConnectNamedPipe() on a pipe instance because its busy doing something
// else, CreateFile() will fail with ERROR_PIPE_BUSY. WaitNamedPipe() waits
// until a pipe instance is ready, but theres no way to wait for this
// condition and atomically open the client side of the pipe in a single
// operation. CallNamedPipe() implements similar retry logic to this, also in
// user-mode code.
//
// This loop is only intended to retry on ERROR_PIPE_BUSY. Notably, if the
// handler is so lazy that it hasnt even called CreateNamedPipe() yet,
// CreateFile() will fail with ERROR_FILE_NOT_FOUND, and this function is
// expected to fail without retrying anything. If the handler is started at
// around the same time as its client, something external to this code must be
// done to guarantee correct ordering. When the client starts the handler
// itself, CrashpadClient::StartHandler() provides this synchronization.
for (;;) {
ScopedFileHANDLE pipe(
CreateFile(pipe_name.c_str(),
GENERIC_READ | GENERIC_WRITE,
0,
nullptr,
OPEN_EXISTING,
SECURITY_SQOS_PRESENT | SECURITY_IDENTIFICATION,
nullptr));
if (!pipe.is_valid()) {
if (GetLastError() != ERROR_PIPE_BUSY) {
PLOG(ERROR) << "CreateFile";
return false;
}
if (!WaitNamedPipe(pipe_name.c_str(), NMPWAIT_WAIT_FOREVER)) {
PLOG(ERROR) << "WaitNamedPipe";
return false;
}
continue;
}
DWORD mode = PIPE_READMODE_MESSAGE;
if (!SetNamedPipeHandleState(pipe.get(), &mode, nullptr, nullptr)) {
PLOG(ERROR) << "SetNamedPipeHandleState";
return false;
}
DWORD bytes_read = 0;
BOOL result = TransactNamedPipe(
pipe.get(),
// This is [in], but is incorrectly declared non-const.
const_cast<ClientToServerMessage*>(&message),
sizeof(message),
response,
sizeof(*response),
&bytes_read,
nullptr);
if (!result) {
PLOG(ERROR) << "TransactNamedPipe";
return false;
}
if (bytes_read != sizeof(*response)) {
LOG(ERROR) << "TransactNamedPipe: expected " << sizeof(*response)
<< ", observed " << bytes_read;
return false;
}
return true;
}
}
HANDLE CreateNamedPipeInstance(const std::wstring& pipe_name,
bool first_instance) {
SECURITY_ATTRIBUTES security_attributes;
SECURITY_ATTRIBUTES* security_attributes_pointer = nullptr;
ScopedLocalAlloc scoped_sec_desc;
if (first_instance) {
// Pre-Vista does not have integrity levels.
const DWORD version = GetVersion();
const DWORD major_version = LOBYTE(LOWORD(version));
const bool is_vista_or_later = major_version >= 6;
if (is_vista_or_later) {
// Mandatory Label, no ACE flags, no ObjectType, integrity level
// untrusted.
const wchar_t kSddl[] = L"S:(ML;;;;;S-1-16-0)";
PSECURITY_DESCRIPTOR sec_desc;
PCHECK(ConvertStringSecurityDescriptorToSecurityDescriptor(
kSddl, SDDL_REVISION_1, &sec_desc, nullptr))
<< "ConvertStringSecurityDescriptorToSecurityDescriptor";
// Take ownership of the allocated SECURITY_DESCRIPTOR.
scoped_sec_desc.reset(sec_desc);
memset(&security_attributes, 0, sizeof(security_attributes));
security_attributes.nLength = sizeof(SECURITY_ATTRIBUTES);
security_attributes.lpSecurityDescriptor = sec_desc;
security_attributes.bInheritHandle = TRUE;
security_attributes_pointer = &security_attributes;
}
}
return CreateNamedPipe(
pipe_name.c_str(),
PIPE_ACCESS_DUPLEX | (first_instance ? FILE_FLAG_FIRST_PIPE_INSTANCE : 0),
PIPE_TYPE_MESSAGE | PIPE_READMODE_MESSAGE | PIPE_WAIT,
ExceptionHandlerServer::kPipeInstances,
512,
512,
0,
security_attributes_pointer);
}
} // namespace crashpad