crashpad/util/win/capture_context_test.cc
Mark Mentovai 6d2d31d2d1 Use base/macros.h instead of base/basictypes.h
This was done in Chromium’s local copy of Crashpad in 562827afb599. This
change is similar to that one, except more care was taken to avoid
including headers from a .cc or _test.cc when already included by the
associated .h. Rather than using <stddef.h> for size_t, Crashpad has
always used <sys/types.h>, so that’s used here as well.

This updates mini_chromium to 8a2363f486e3a0dc562a68884832d06d28d38dcc,
which removes base/basictypes.h.

e128dcf10122 Remove base/move.h; use std::move() instead of Pass()
8a2363f486e3 Move basictypes.h to macros.h

R=avi@chromium.org

Review URL: https://codereview.chromium.org/1566713002 .
2016-01-06 12:22:50 -05:00

184 lines
6.5 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2015 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "util/win/capture_context.h"
#include <stdint.h>
#include <sys/types.h>
#include <algorithm>
#include "base/macros.h"
#include "build/build_config.h"
#include "gtest/gtest.h"
namespace crashpad {
namespace test {
namespace {
// If the context structure has fields that tell whether its valid, such as
// magic numbers or size fields, sanity-checks those fields for validity with
// fatal gtest assertions. For other fields, where its possible to reason about
// their validity based solely on their contents, sanity-checks via nonfatal
// gtest assertions.
void SanityCheckContext(const CONTEXT& context) {
#if defined(ARCH_CPU_X86)
const uint32_t must_have = CONTEXT_i386 |
CONTEXT_CONTROL |
CONTEXT_INTEGER |
CONTEXT_SEGMENTS |
CONTEXT_FLOATING_POINT;
ASSERT_EQ(must_have, context.ContextFlags & must_have);
const uint32_t may_have = CONTEXT_EXTENDED_REGISTERS;
ASSERT_EQ(0, context.ContextFlags & ~(must_have | may_have));
#elif defined(ARCH_CPU_X86_64)
ASSERT_EQ(CONTEXT_AMD64 |
CONTEXT_CONTROL |
CONTEXT_INTEGER |
CONTEXT_SEGMENTS |
CONTEXT_FLOATING_POINT,
context.ContextFlags);
#endif
#if defined(ARCH_CPU_X86_FAMILY)
// Many bit positions in the flags register are reserved and will always read
// a known value. Most reserved bits are always 0, but bit 1 is always 1.
// Check that the reserved bits are all set to their expected values. Note
// that the set of reserved bits may be relaxed over time with newer CPUs, and
// that this test may need to be changed to reflect these developments. The
// current set of reserved bits are 1, 3, 5, 15, and 22 and higher. See Intel
// Software Developers Manual, Volume 1: Basic Architecture (253665-055),
// 3.4.3 “EFLAGS Register”, and AMD Architecture Programmers Manual, Volume
// 2: System Programming (24593-3.25), 3.1.6 “RFLAGS Register”.
EXPECT_EQ(2u, context.EFlags & 0xffc0802a);
// CaptureContext() doesnt capture debug registers, so make sure they read 0.
EXPECT_EQ(0, context.Dr0);
EXPECT_EQ(0, context.Dr1);
EXPECT_EQ(0, context.Dr2);
EXPECT_EQ(0, context.Dr3);
EXPECT_EQ(0, context.Dr6);
EXPECT_EQ(0, context.Dr7);
#endif
#if defined(ARCH_CPU_X86)
// fxsave doesnt write these bytes.
for (size_t i = 464; i < arraysize(context.ExtendedRegisters); ++i) {
SCOPED_TRACE(i);
EXPECT_EQ(0, context.ExtendedRegisters[i]);
}
#elif defined(ARCH_CPU_X86_64)
// mxcsr shows up twice in the context structure. Make sure the values are
// identical.
EXPECT_EQ(context.MxCsr, context.FltSave.MxCsr);
// fxsave doesnt write these bytes.
for (size_t i = 0; i < arraysize(context.FltSave.Reserved4); ++i) {
SCOPED_TRACE(i);
EXPECT_EQ(0, context.FltSave.Reserved4[i]);
}
// CaptureContext() doesnt use these fields.
EXPECT_EQ(0, context.P1Home);
EXPECT_EQ(0, context.P2Home);
EXPECT_EQ(0, context.P3Home);
EXPECT_EQ(0, context.P4Home);
EXPECT_EQ(0, context.P5Home);
EXPECT_EQ(0, context.P6Home);
for (size_t i = 0; i < arraysize(context.VectorRegister); ++i) {
SCOPED_TRACE(i);
EXPECT_EQ(0, context.VectorRegister[i].Low);
EXPECT_EQ(0, context.VectorRegister[i].High);
}
EXPECT_EQ(0, context.VectorControl);
EXPECT_EQ(0, context.DebugControl);
EXPECT_EQ(0, context.LastBranchToRip);
EXPECT_EQ(0, context.LastBranchFromRip);
EXPECT_EQ(0, context.LastExceptionToRip);
EXPECT_EQ(0, context.LastExceptionFromRip);
#endif
}
// A CPU-independent function to return the program counter.
uintptr_t ProgramCounterFromContext(const CONTEXT& context) {
#if defined(ARCH_CPU_X86)
return context.Eip;
#elif defined(ARCH_CPU_X86_64)
return context.Rip;
#endif
}
// A CPU-independent function to return the stack pointer.
uintptr_t StackPointerFromContext(const CONTEXT& context) {
#if defined(ARCH_CPU_X86)
return context.Esp;
#elif defined(ARCH_CPU_X86_64)
return context.Rsp;
#endif
}
void TestCaptureContext() {
CONTEXT context_1;
CaptureContext(&context_1);
{
SCOPED_TRACE("context_1");
ASSERT_NO_FATAL_FAILURE(SanityCheckContext(context_1));
}
// The program counter reference value is this functions address. The
// captured program counter should be slightly greater than or equal to the
// reference program counter.
uintptr_t pc = ProgramCounterFromContext(context_1);
// Declare sp and context_2 here because all local variables need to be
// declared before computing the stack pointer reference value, so that the
// reference value can be the lowest value possible.
uintptr_t sp;
CONTEXT context_2;
// The stack pointer reference value is the lowest address of a local variable
// in this function. The captured program counter will be slightly less than
// or equal to the reference stack pointer.
const uintptr_t kReferenceSP =
std::min(std::min(reinterpret_cast<uintptr_t>(&context_1),
reinterpret_cast<uintptr_t>(&context_2)),
std::min(reinterpret_cast<uintptr_t>(&pc),
reinterpret_cast<uintptr_t>(&sp)));
sp = StackPointerFromContext(context_1);
EXPECT_LT(kReferenceSP - sp, 512u);
// Capture the context again, expecting that the stack pointer stays the same
// and the program counter increases. Strictly speaking, theres no guarantee
// that these conditions will hold, although they do for known compilers even
// under typical optimization.
CaptureContext(&context_2);
{
SCOPED_TRACE("context_2");
ASSERT_NO_FATAL_FAILURE(SanityCheckContext(context_2));
}
EXPECT_EQ(sp, StackPointerFromContext(context_2));
EXPECT_GT(ProgramCounterFromContext(context_2), pc);
}
TEST(CaptureContextWin, CaptureContext) {
ASSERT_NO_FATAL_FAILURE(TestCaptureContext());
}
} // namespace
} // namespace test
} // namespace crashpad