crashpad/snapshot/minidump/minidump_context_converter.cc
Piotr Tworek a8ff626764 Add a bunch of missing string.h includes.
There are a few files in the tree which use various functions defined
in string.h (memcpy, strlen, strnlen, memmove, etc), but never include
the necessary header file. After I've recently updated one of my systems
to a newer glibc version (2.30) this code failed to build. Adding the
missing includes fixes the problem.

The undeclared functions for each file are:
* simple_address_range_bag.h - memcpy
* http_multipart_builder.cc - strlen
* minidump_context_converter.cc - memcpy
* ptrace_client.cc - strlen
* http_transport_socket.cc - strncpy, strlen, memcpy
* process_memory.cc - memchr
* log_output_stream.cc - strlen

Change-Id: I3108c36b8a6927ac11f6839606cb495926fa9e4e
Reviewed-on: https://chromium-review.googlesource.com/c/crashpad/crashpad/+/2207139
Reviewed-by: Mark Mentovai <mark@chromium.org>
Commit-Queue: Mark Mentovai <mark@chromium.org>
2020-05-18 13:54:02 +00:00

278 lines
9.6 KiB
C++

// Copyright 2019 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "snapshot/minidump/minidump_context_converter.h"
#include <string.h>
#include "base/stl_util.h"
#include "minidump/minidump_context.h"
namespace crashpad {
namespace internal {
MinidumpContextConverter::MinidumpContextConverter() : initialized_() {
context_.architecture = CPUArchitecture::kCPUArchitectureUnknown;
}
bool MinidumpContextConverter::Initialize(
CPUArchitecture arch,
const std::vector<unsigned char>& minidump_context) {
INITIALIZATION_STATE_SET_INITIALIZING(initialized_);
if (minidump_context.size() == 0) {
// Thread has no context.
context_.architecture = CPUArchitecture::kCPUArchitectureUnknown;
INITIALIZATION_STATE_SET_VALID(initialized_);
return true;
}
context_.architecture = arch;
if (context_.architecture == CPUArchitecture::kCPUArchitectureX86) {
context_memory_.resize(sizeof(CPUContextX86));
context_.x86 = reinterpret_cast<CPUContextX86*>(context_memory_.data());
const MinidumpContextX86* src =
reinterpret_cast<const MinidumpContextX86*>(minidump_context.data());
if (minidump_context.size() < sizeof(MinidumpContextX86)) {
return false;
}
if (!(src->context_flags & kMinidumpContextX86)) {
return false;
}
if (src->context_flags & kMinidumpContextX86Extended) {
context_.x86->fxsave = src->fxsave;
} else if (src->context_flags & kMinidumpContextX86FloatingPoint) {
CPUContextX86::FsaveToFxsave(src->fsave, &context_.x86->fxsave);
}
context_.x86->eax = src->eax;
context_.x86->ebx = src->ebx;
context_.x86->ecx = src->ecx;
context_.x86->edx = src->edx;
context_.x86->edi = src->edi;
context_.x86->esi = src->esi;
context_.x86->ebp = src->ebp;
context_.x86->esp = src->esp;
context_.x86->eip = src->eip;
context_.x86->eflags = src->eflags;
context_.x86->cs = static_cast<uint16_t>(src->cs);
context_.x86->ds = static_cast<uint16_t>(src->ds);
context_.x86->es = static_cast<uint16_t>(src->es);
context_.x86->fs = static_cast<uint16_t>(src->fs);
context_.x86->gs = static_cast<uint16_t>(src->gs);
context_.x86->ss = static_cast<uint16_t>(src->ss);
context_.x86->dr0 = src->dr0;
context_.x86->dr1 = src->dr1;
context_.x86->dr2 = src->dr2;
context_.x86->dr3 = src->dr3;
context_.x86->dr6 = src->dr6;
context_.x86->dr7 = src->dr7;
// Minidump passes no value for dr4/5. Our output context has space for
// them. According to spec they're obsolete, but when present read as
// aliases for dr6/7, so we'll do this.
context_.x86->dr4 = src->dr6;
context_.x86->dr5 = src->dr7;
} else if (context_.architecture == CPUArchitecture::kCPUArchitectureX86_64) {
context_memory_.resize(sizeof(CPUContextX86_64));
context_.x86_64 =
reinterpret_cast<CPUContextX86_64*>(context_memory_.data());
const MinidumpContextAMD64* src =
reinterpret_cast<const MinidumpContextAMD64*>(minidump_context.data());
if (minidump_context.size() < sizeof(MinidumpContextAMD64)) {
return false;
}
if (!(src->context_flags & kMinidumpContextAMD64)) {
return false;
}
context_.x86_64->fxsave = src->fxsave;
context_.x86_64->cs = src->cs;
context_.x86_64->fs = src->fs;
context_.x86_64->gs = src->gs;
context_.x86_64->rflags = src->eflags;
context_.x86_64->dr0 = src->dr0;
context_.x86_64->dr1 = src->dr1;
context_.x86_64->dr2 = src->dr2;
context_.x86_64->dr3 = src->dr3;
context_.x86_64->dr6 = src->dr6;
context_.x86_64->dr7 = src->dr7;
context_.x86_64->rax = src->rax;
context_.x86_64->rcx = src->rcx;
context_.x86_64->rdx = src->rdx;
context_.x86_64->rbx = src->rbx;
context_.x86_64->rsp = src->rsp;
context_.x86_64->rbp = src->rbp;
context_.x86_64->rsi = src->rsi;
context_.x86_64->rdi = src->rdi;
context_.x86_64->r8 = src->r8;
context_.x86_64->r9 = src->r9;
context_.x86_64->r10 = src->r10;
context_.x86_64->r11 = src->r11;
context_.x86_64->r12 = src->r12;
context_.x86_64->r13 = src->r13;
context_.x86_64->r14 = src->r14;
context_.x86_64->r15 = src->r15;
context_.x86_64->rip = src->rip;
// See comments on x86 above.
context_.x86_64->dr4 = src->dr6;
context_.x86_64->dr5 = src->dr7;
} else if (context_.architecture == CPUArchitecture::kCPUArchitectureARM) {
context_memory_.resize(sizeof(CPUContextARM));
context_.arm = reinterpret_cast<CPUContextARM*>(context_memory_.data());
const MinidumpContextARM* src =
reinterpret_cast<const MinidumpContextARM*>(minidump_context.data());
if (minidump_context.size() < sizeof(MinidumpContextARM)) {
return false;
}
if (!(src->context_flags & kMinidumpContextARM)) {
return false;
}
for (size_t i = 0; i < base::size(src->regs); i++) {
context_.arm->regs[i] = src->regs[i];
}
context_.arm->fp = src->fp;
context_.arm->ip = src->ip;
context_.arm->sp = src->sp;
context_.arm->lr = src->lr;
context_.arm->pc = src->pc;
context_.arm->cpsr = src->cpsr;
context_.arm->vfp_regs.fpscr = src->fpscr;
for (size_t i = 0; i < base::size(src->vfp); i++) {
context_.arm->vfp_regs.vfp[i] = src->vfp[i];
}
context_.arm->have_fpa_regs = false;
context_.arm->have_vfp_regs =
!!(src->context_flags & kMinidumpContextARMVFP);
} else if (context_.architecture == CPUArchitecture::kCPUArchitectureARM64) {
context_memory_.resize(sizeof(CPUContextARM64));
context_.arm64 = reinterpret_cast<CPUContextARM64*>(context_memory_.data());
const MinidumpContextARM64* src =
reinterpret_cast<const MinidumpContextARM64*>(minidump_context.data());
if (minidump_context.size() < sizeof(MinidumpContextARM64)) {
return false;
}
if (!(src->context_flags & kMinidumpContextARM64)) {
return false;
}
for (size_t i = 0; i < base::size(src->regs); i++) {
context_.arm64->regs[i] = src->regs[i];
}
context_.arm64->regs[29] = src->fp;
context_.arm64->regs[30] = src->lr;
for (size_t i = 0; i < base::size(src->fpsimd); i++) {
context_.arm64->fpsimd[i] = src->fpsimd[i];
}
context_.arm64->sp = src->sp;
context_.arm64->pc = src->pc;
context_.arm64->fpcr = src->fpcr;
context_.arm64->fpsr = src->fpsr;
context_.arm64->spsr = src->cpsr;
} else if (context_.architecture == CPUArchitecture::kCPUArchitectureMIPSEL) {
context_memory_.resize(sizeof(CPUContextMIPS));
context_.mipsel = reinterpret_cast<CPUContextMIPS*>(context_memory_.data());
const MinidumpContextMIPS* src =
reinterpret_cast<const MinidumpContextMIPS*>(minidump_context.data());
if (minidump_context.size() < sizeof(MinidumpContextMIPS)) {
return false;
}
if (!(src->context_flags & kMinidumpContextMIPS)) {
return false;
}
for (size_t i = 0; i < base::size(src->regs); i++) {
context_.mipsel->regs[i] = src->regs[i];
}
context_.mipsel->mdhi = static_cast<uint32_t>(src->mdhi);
context_.mipsel->mdlo = static_cast<uint32_t>(src->mdlo);
context_.mipsel->dsp_control = src->dsp_control;
for (size_t i = 0; i < base::size(src->hi); i++) {
context_.mipsel->hi[i] = src->hi[i];
context_.mipsel->lo[i] = src->lo[i];
}
context_.mipsel->cp0_epc = static_cast<uint32_t>(src->epc);
context_.mipsel->cp0_badvaddr = static_cast<uint32_t>(src->badvaddr);
context_.mipsel->cp0_status = src->status;
context_.mipsel->cp0_cause = src->cause;
context_.mipsel->fpcsr = src->fpcsr;
context_.mipsel->fir = src->fir;
memcpy(&context_.mipsel->fpregs, &src->fpregs, sizeof(src->fpregs));
} else if (context_.architecture ==
CPUArchitecture::kCPUArchitectureMIPS64EL) {
context_memory_.resize(sizeof(CPUContextMIPS64));
context_.mips64 =
reinterpret_cast<CPUContextMIPS64*>(context_memory_.data());
const MinidumpContextMIPS64* src =
reinterpret_cast<const MinidumpContextMIPS64*>(minidump_context.data());
if (minidump_context.size() < sizeof(MinidumpContextMIPS64)) {
return false;
}
if (!(src->context_flags & kMinidumpContextMIPS64)) {
return false;
}
for (size_t i = 0; i < base::size(src->regs); i++) {
context_.mips64->regs[i] = src->regs[i];
}
context_.mips64->mdhi = src->mdhi;
context_.mips64->mdlo = src->mdlo;
context_.mips64->dsp_control = src->dsp_control;
for (size_t i = 0; i < base::size(src->hi); i++) {
context_.mips64->hi[i] = src->hi[i];
context_.mips64->lo[i] = src->lo[i];
}
context_.mips64->cp0_epc = src->epc;
context_.mips64->cp0_badvaddr = src->badvaddr;
context_.mips64->cp0_status = src->status;
context_.mips64->cp0_cause = src->cause;
context_.mips64->fpcsr = src->fpcsr;
context_.mips64->fir = src->fir;
memcpy(&context_.mips64->fpregs, &src->fpregs, sizeof(src->fpregs));
} else {
// Architecture is listed as "unknown".
DLOG(ERROR) << "Unknown architecture";
}
INITIALIZATION_STATE_SET_VALID(initialized_);
return true;
}
} // namespace internal
} // namespace crashpad