crashpad/snapshot/cpu_context.cc
Alex Gough 25222891c7 Add fields for shadow stack registers to x64 snapshot
This will be used in a later CL to shuttle shadow stack information
from capture to minidumps. For now these fields are zeroed and have
no effect on any platform.

The x64 snapshot context we use no longer directly maps to the early
CONTEXT structure used by Windows (the prelude still matches). This
may cause confusion if people use the size of a snapshot context when
they meant to use sizeof(CONTEXT).

Bug: 1250098
Change-Id: Idac7d888b9e606ceb250c4027e0e7f29f4c0a55f
Reviewed-on: https://chromium-review.googlesource.com/c/crashpad/crashpad/+/3536963
Reviewed-by: Joshua Peraza <jperaza@chromium.org>
Commit-Queue: Alex Gough <ajgo@chromium.org>
2022-05-17 01:12:26 +00:00

241 lines
7.2 KiB
C++

// Copyright 2014 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "snapshot/cpu_context.h"
#include <stddef.h>
#include <string.h>
#include <iterator>
#include "base/notreached.h"
#include "util/misc/arraysize.h"
#include "util/misc/implicit_cast.h"
namespace crashpad {
namespace {
// Sanity-check complex structures to ensure interoperability.
static_assert(sizeof(CPUContextX86::Fsave) == 108, "CPUContextX86::Fsave size");
static_assert(sizeof(CPUContextX86::Fxsave) == 512,
"CPUContextX86::Fxsave size");
static_assert(sizeof(CPUContextX86_64::Fxsave) == 512,
"CPUContextX86_64::Fxsave size");
enum {
kX87TagValid = 0,
kX87TagZero,
kX87TagSpecial,
kX87TagEmpty,
};
} // namespace
// static
void CPUContextX86::FxsaveToFsave(const Fxsave& fxsave, Fsave* fsave) {
fsave->fcw = fxsave.fcw;
fsave->reserved_1 = 0;
fsave->fsw = fxsave.fsw;
fsave->reserved_2 = 0;
fsave->ftw = FxsaveToFsaveTagWord(fxsave.fsw, fxsave.ftw, fxsave.st_mm);
fsave->reserved_3 = 0;
fsave->fpu_ip = fxsave.fpu_ip;
fsave->fpu_cs = fxsave.fpu_cs;
fsave->fop = fxsave.fop;
fsave->fpu_dp = fxsave.fpu_dp;
fsave->fpu_ds = fxsave.fpu_ds;
fsave->reserved_4 = 0;
static_assert(ArraySize(fsave->st) == ArraySize(fxsave.st_mm),
"FPU stack registers must be equivalent");
for (size_t index = 0; index < std::size(fsave->st); ++index) {
memcpy(fsave->st[index], fxsave.st_mm[index].st, sizeof(fsave->st[index]));
}
}
// static
void CPUContextX86::FsaveToFxsave(const Fsave& fsave, Fxsave* fxsave) {
fxsave->fcw = fsave.fcw;
fxsave->fsw = fsave.fsw;
fxsave->ftw = FsaveToFxsaveTagWord(fsave.ftw);
fxsave->reserved_1 = 0;
fxsave->fop = fsave.fop;
fxsave->fpu_ip = fsave.fpu_ip;
fxsave->fpu_cs = fsave.fpu_cs;
fxsave->reserved_2 = 0;
fxsave->fpu_dp = fsave.fpu_dp;
fxsave->fpu_ds = fsave.fpu_ds;
fxsave->reserved_3 = 0;
fxsave->mxcsr = 0;
fxsave->mxcsr_mask = 0;
static_assert(ArraySize(fxsave->st_mm) == ArraySize(fsave.st),
"FPU stack registers must be equivalent");
for (size_t index = 0; index < std::size(fsave.st); ++index) {
memcpy(fxsave->st_mm[index].st, fsave.st[index], sizeof(fsave.st[index]));
memset(fxsave->st_mm[index].st_reserved,
0,
sizeof(fxsave->st_mm[index].st_reserved));
}
memset(fxsave->xmm, 0, sizeof(*fxsave) - offsetof(Fxsave, xmm));
}
// static
uint16_t CPUContextX86::FxsaveToFsaveTagWord(
uint16_t fsw,
uint8_t fxsave_tag,
const CPUContextX86::X87OrMMXRegister st_mm[8]) {
// The x87 tag word (in both abridged and full form) identifies physical
// registers, but |st_mm| is arranged in logical stack order. In order to map
// physical tag word bits to the logical stack registers they correspond to,
// the “stack top” value from the x87 status word is necessary.
int stack_top = (fsw >> 11) & 0x7;
uint16_t fsave_tag = 0;
for (int physical_index = 0; physical_index < 8; ++physical_index) {
bool fxsave_bit = (fxsave_tag & (1 << physical_index)) != 0;
uint8_t fsave_bits;
if (fxsave_bit) {
int st_index = (physical_index + 8 - stack_top) % 8;
const CPUContextX86::X87Register& st = st_mm[st_index].st;
uint32_t exponent = ((st[9] & 0x7f) << 8) | st[8];
if (exponent == 0x7fff) {
// Infinity, NaN, pseudo-infinity, or pseudo-NaN. If it was important to
// distinguish between these, the J bit and the M bit (the most
// significant bit of |fraction|) could be consulted.
fsave_bits = kX87TagSpecial;
} else {
// The integer bit the “J bit”.
bool integer_bit = (st[7] & 0x80) != 0;
if (exponent == 0) {
uint64_t fraction = ((implicit_cast<uint64_t>(st[7]) & 0x7f) << 56) |
(implicit_cast<uint64_t>(st[6]) << 48) |
(implicit_cast<uint64_t>(st[5]) << 40) |
(implicit_cast<uint64_t>(st[4]) << 32) |
(implicit_cast<uint32_t>(st[3]) << 24) |
(st[2] << 16) | (st[1] << 8) | st[0];
if (!integer_bit && fraction == 0) {
fsave_bits = kX87TagZero;
} else {
// Denormal (if the J bit is clear) or pseudo-denormal.
fsave_bits = kX87TagSpecial;
}
} else if (integer_bit) {
fsave_bits = kX87TagValid;
} else {
// Unnormal.
fsave_bits = kX87TagSpecial;
}
}
} else {
fsave_bits = kX87TagEmpty;
}
fsave_tag |= (fsave_bits << (physical_index * 2));
}
return fsave_tag;
}
// static
uint8_t CPUContextX86::FsaveToFxsaveTagWord(uint16_t fsave_tag) {
uint8_t fxsave_tag = 0;
for (int physical_index = 0; physical_index < 8; ++physical_index) {
const uint8_t fsave_bits = (fsave_tag >> (physical_index * 2)) & 0x3;
const bool fxsave_bit = fsave_bits != kX87TagEmpty;
fxsave_tag |= fxsave_bit << physical_index;
}
return fxsave_tag;
}
uint64_t CPUContext::InstructionPointer() const {
switch (architecture) {
case kCPUArchitectureX86:
return x86->eip;
case kCPUArchitectureX86_64:
return x86_64->rip;
case kCPUArchitectureARM:
return arm->pc;
case kCPUArchitectureARM64:
return arm64->pc;
default:
NOTREACHED();
return ~0ull;
}
}
uint64_t CPUContext::StackPointer() const {
switch (architecture) {
case kCPUArchitectureX86:
return x86->esp;
case kCPUArchitectureX86_64:
return x86_64->rsp;
case kCPUArchitectureARM:
return arm->sp;
case kCPUArchitectureARM64:
return arm64->sp;
default:
NOTREACHED();
return ~0ull;
}
}
uint64_t CPUContext::ShadowStackPointer() const {
switch (architecture) {
case kCPUArchitectureX86:
case kCPUArchitectureARM:
case kCPUArchitectureARM64:
NOTREACHED();
return 0;
case kCPUArchitectureX86_64:
return x86_64->xstate.cet_u.ssp;
default:
NOTREACHED();
return ~0ull;
}
}
bool CPUContext::HasShadowStack() const {
switch (architecture) {
case kCPUArchitectureX86:
case kCPUArchitectureARM:
case kCPUArchitectureARM64:
return false;
case kCPUArchitectureX86_64:
return x86_64->xstate.cet_u.cetmsr != 0;
default:
NOTREACHED();
return false;
}
}
bool CPUContext::Is64Bit() const {
switch (architecture) {
case kCPUArchitectureX86_64:
case kCPUArchitectureARM64:
case kCPUArchitectureMIPS64EL:
return true;
case kCPUArchitectureX86:
case kCPUArchitectureARM:
case kCPUArchitectureMIPSEL:
return false;
default:
NOTREACHED();
return false;
}
}
} // namespace crashpad