crashpad/client/capture_context_mac_test.cc
2014-10-07 17:28:50 -04:00

157 lines
5.7 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2014 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "client/capture_context_mac.h"
#include <mach/mach.h>
#include <stdint.h>
#include <algorithm>
#include "build/build_config.h"
#include "gtest/gtest.h"
namespace crashpad {
namespace test {
namespace {
// If the context structure has fields that tell whether its valid, such as
// magic numbers or size fields, sanity-checks those fields for validity with
// fatal gtest assertions. For other fields, where its possible to reason about
// their validity based solely on their contents, sanity-checks via nonfatal
// gtest assertions.
void SanityCheckContext(NativeCPUContext* context) {
#if defined(ARCH_CPU_X86)
ASSERT_EQ(x86_THREAD_STATE32, context->tsh.flavor);
ASSERT_EQ(static_cast<int>(x86_THREAD_STATE32_COUNT), context->tsh.count);
#elif defined(ARCH_CPU_X86_64)
ASSERT_EQ(x86_THREAD_STATE64, context->tsh.flavor);
ASSERT_EQ(static_cast<int>(x86_THREAD_STATE64_COUNT), context->tsh.count);
#endif
#if defined(ARCH_CPU_X86_FAMILY)
// The segment registers are only capable of storing 16-bit quantities, but
// the context structure provides native integer-width fields for them. Ensure
// that the high bits are all clear.
//
// Many bit positions in the flags register are reserved and will always read
// a known value. Most reservd bits are always 0, but bit 1 is always 1. Check
// that the reserved bits are all set to their expected values. Note that the
// set of reserved bits may be relaxed over time with newer CPUs, and that
// this test may need to be changed to reflect these developments. The current
// set of reserved bits are 1, 3, 5, 15, and 22 and higher. See Intel Software
// Developers Manual, Volume 1: Basic Architecture (253665-051), 3.4.3
// “EFLAGS Register”, and AMD Architecture Programmers Manual, Volume 2:
// System Programming (24593-3.24), 3.1.6 “RFLAGS Register”.
#if defined(ARCH_CPU_X86)
EXPECT_EQ(0u, context->uts.ts32.__cs & ~0xffff);
EXPECT_EQ(0u, context->uts.ts32.__ds & ~0xffff);
EXPECT_EQ(0u, context->uts.ts32.__es & ~0xffff);
EXPECT_EQ(0u, context->uts.ts32.__fs & ~0xffff);
EXPECT_EQ(0u, context->uts.ts32.__gs & ~0xffff);
EXPECT_EQ(0u, context->uts.ts32.__ss & ~0xffff);
EXPECT_EQ(2u, context->uts.ts32.__eflags & 0xffc0802a);
#elif defined(ARCH_CPU_X86_64)
EXPECT_EQ(0u, context->uts.ts64.__cs & ~UINT64_C(0xffff));
EXPECT_EQ(0u, context->uts.ts64.__fs & ~UINT64_C(0xffff));
EXPECT_EQ(0u, context->uts.ts64.__gs & ~UINT64_C(0xffff));
EXPECT_EQ(2u, context->uts.ts64.__rflags & UINT64_C(0xffffffffffc0802a));
#endif
#endif
}
// A CPU-independent function to return the program counter.
uintptr_t ProgramCounterFromContext(NativeCPUContext* context) {
#if defined(ARCH_CPU_X86)
return context->uts.ts32.__eip;
#elif defined(ARCH_CPU_X86_64)
return context->uts.ts64.__rip;
#endif
}
// A CPU-independent function to return the stack pointer.
uintptr_t StackPointerFromContext(NativeCPUContext* context) {
#if defined(ARCH_CPU_X86)
return context->uts.ts32.__esp;
#elif defined(ARCH_CPU_X86_64)
return context->uts.ts64.__rsp;
#endif
}
void TestCaptureContext() {
NativeCPUContext context_1;
CaptureContext(&context_1);
{
SCOPED_TRACE("context_1");
SanityCheckContext(&context_1);
}
if (testing::Test::HasFatalFailure()) {
return;
}
// The program counter reference value is this functions address. The
// captured program counter should be slightly greater than or equal to the
// reference program counter.
const uintptr_t kReferencePC =
reinterpret_cast<uintptr_t>(TestCaptureContext);
uintptr_t pc = ProgramCounterFromContext(&context_1);
EXPECT_LT(pc - kReferencePC, 64u);
// Declare sp and context_2 here because all local variables need to be
// declared before computing the stack pointer reference value, so that the
// reference value can be the lowest value possible.
uintptr_t sp;
NativeCPUContext context_2;
// The stack pointer reference value is the lowest address of a local variable
// in this function. The captured program counter will be slightly less than
// or equal to the reference stack pointer.
const uintptr_t kReferenceSP =
std::min(std::min(reinterpret_cast<uintptr_t>(&context_1),
reinterpret_cast<uintptr_t>(&context_2)),
std::min(reinterpret_cast<uintptr_t>(&pc),
reinterpret_cast<uintptr_t>(&sp)));
sp = StackPointerFromContext(&context_1);
EXPECT_LT(kReferenceSP - sp, 512u);
// Capture the context again, expecting that the stack pointer stays the same
// and the program counter increases. Strictly speaking, theres no guarantee
// that these conditions will hold, although they do for known compilers even
// under typical optimization.
CaptureContext(&context_2);
{
SCOPED_TRACE("context_2");
SanityCheckContext(&context_2);
}
if (testing::Test::HasFatalFailure()) {
return;
}
EXPECT_EQ(sp, StackPointerFromContext(&context_2));
EXPECT_GT(ProgramCounterFromContext(&context_2), pc);
}
TEST(CaptureContextMac, CaptureContext) {
TestCaptureContext();
if (Test::HasFatalFailure()) {
return;
}
}
} // namespace
} // namespace test
} // namespace crashpad