crashpad/snapshot/elf/elf_image_reader_test.cc
Joshua Peraza 52ff1accbb linux: Fix locating modules with multiple mappings from offset 0
The general strategy used by Crashpad to determine loaded modules is to
read the link_map to get the addresses of the dynamic arrays for all
loaded modules. Those addresses can then be used to query the MemoryMap
to locate the module's mappings, and in particular the base mapping
from which Crashpad can parse the entire loaded ELF file.

ELF modules are typically loaded in several mappings with varying
permissions for different segments. The previous strategy used to find
the base mapping for a module was to search backwards from the mapping
for the dynamic array until a mapping from file offset 0 was found for
the same file. This fails when the file is mapped multiple times from
file offset 0, which can happen if the first page of the file contains
a GNU_RELRO segment.

This new strategy queries the MemoryMap for ALL mappings associated
with the dynamic array's mapping, mapped from offset 0. The consumer
(process_reader_linux.cc) can then determine which mapping is the
correct base by attempting to parse a module at that address and
corroborating the PT_DYNAMIC or program header table address from the
parsed module with the values Crashpad gets from the link_map or
auxiliary vector.

Bug: crashpad:30
Change-Id: Ibfcbba512e8fccc8c65afef734ea5640b71e9f70
Reviewed-on: https://chromium-review.googlesource.com/1139396
Commit-Queue: Joshua Peraza <jperaza@chromium.org>
Reviewed-by: Mark Mentovai <mark@chromium.org>
2018-07-26 15:33:15 +00:00

359 lines
12 KiB
C++

// Copyright 2017 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "snapshot/elf/elf_image_reader.h"
#include <dlfcn.h>
#include <link.h>
#include <unistd.h>
#include "base/logging.h"
#include "build/build_config.h"
#include "gtest/gtest.h"
#include "test/multiprocess_exec.h"
#include "test/process_type.h"
#include "test/scoped_module_handle.h"
#include "test/test_paths.h"
#include "util/file/file_io.h"
#include "util/misc/address_types.h"
#include "util/misc/elf_note_types.h"
#include "util/misc/from_pointer_cast.h"
#include "util/process/process_memory_native.h"
#if defined(OS_FUCHSIA)
#include <zircon/syscalls.h>
#include "base/fuchsia/fuchsia_logging.h"
#elif defined(OS_LINUX) || defined(OS_ANDROID)
#include "test/linux/fake_ptrace_connection.h"
#include "util/linux/auxiliary_vector.h"
#include "util/linux/memory_map.h"
#else
#error Port.
#endif // OS_FUCHSIA
extern "C" {
__attribute__((visibility("default"))) void
ElfImageReaderTestExportedSymbol(){};
} // extern "C"
namespace crashpad {
namespace test {
namespace {
#if defined(OS_FUCHSIA)
void LocateExecutable(ProcessType process,
ProcessMemory* memory,
VMAddress* elf_address) {
uintptr_t debug_address;
zx_status_t status = zx_object_get_property(process,
ZX_PROP_PROCESS_DEBUG_ADDR,
&debug_address,
sizeof(debug_address));
ASSERT_EQ(status, ZX_OK)
<< "zx_object_get_property: ZX_PROP_PROCESS_DEBUG_ADDR";
// Can be 0 if requested before the loader has loaded anything.
EXPECT_NE(debug_address, 0u);
constexpr auto k_r_debug_map_offset = offsetof(r_debug, r_map);
uintptr_t map;
ASSERT_TRUE(
memory->Read(debug_address + k_r_debug_map_offset, sizeof(map), &map))
<< "read link_map";
constexpr auto k_link_map_addr_offset = offsetof(link_map, l_addr);
uintptr_t base;
ASSERT_TRUE(memory->Read(map + k_link_map_addr_offset, sizeof(base), &base))
<< "read base";
*elf_address = base;
}
#elif defined(OS_LINUX) || defined(OS_ANDROID)
void LocateExecutable(PtraceConnection* connection,
ProcessMemory* memory,
VMAddress* elf_address) {
AuxiliaryVector aux;
ASSERT_TRUE(aux.Initialize(connection));
VMAddress phdrs;
ASSERT_TRUE(aux.GetValue(AT_PHDR, &phdrs));
MemoryMap memory_map;
ASSERT_TRUE(memory_map.Initialize(connection));
const MemoryMap::Mapping* phdr_mapping = memory_map.FindMapping(phdrs);
ASSERT_TRUE(phdr_mapping);
std::vector<const MemoryMap::Mapping*> possible_mappings =
memory_map.FindFilePossibleMmapStarts(*phdr_mapping);
ASSERT_EQ(possible_mappings.size(), 1u);
*elf_address = possible_mappings[0]->range.Base();
}
#endif // OS_FUCHSIA
void ExpectSymbol(ElfImageReader* reader,
const std::string& symbol_name,
VMAddress expected_symbol_address) {
VMAddress symbol_address;
VMSize symbol_size;
ASSERT_TRUE(
reader->GetDynamicSymbol(symbol_name, &symbol_address, &symbol_size));
EXPECT_EQ(symbol_address, expected_symbol_address);
EXPECT_FALSE(
reader->GetDynamicSymbol("notasymbol", &symbol_address, &symbol_size));
}
void ReadThisExecutableInTarget(ProcessType process,
VMAddress exported_symbol_address) {
#if defined(ARCH_CPU_64_BITS)
constexpr bool am_64_bit = true;
#else
constexpr bool am_64_bit = false;
#endif // ARCH_CPU_64_BITS
ProcessMemoryNative memory;
ASSERT_TRUE(memory.Initialize(process));
ProcessMemoryRange range;
ASSERT_TRUE(range.Initialize(&memory, am_64_bit));
VMAddress elf_address;
#if defined(OS_LINUX) || defined(OS_ANDROID)
FakePtraceConnection connection;
ASSERT_TRUE(connection.Initialize(process));
LocateExecutable(&connection, &memory, &elf_address);
#elif defined(OS_FUCHSIA)
LocateExecutable(process, &memory, &elf_address);
#endif
ASSERT_NO_FATAL_FAILURE();
ElfImageReader reader;
ASSERT_TRUE(reader.Initialize(range, elf_address));
ExpectSymbol(
&reader, "ElfImageReaderTestExportedSymbol", exported_symbol_address);
ElfImageReader::NoteReader::Result result;
std::string note_name;
std::string note_desc;
ElfImageReader::NoteReader::NoteType note_type;
std::unique_ptr<ElfImageReader::NoteReader> notes = reader.Notes(-1);
while ((result = notes->NextNote(&note_name, &note_type, &note_desc)) ==
ElfImageReader::NoteReader::Result::kSuccess) {
}
EXPECT_EQ(result, ElfImageReader::NoteReader::Result::kNoMoreNotes);
notes = reader.Notes(0);
EXPECT_EQ(notes->NextNote(&note_name, &note_type, &note_desc),
ElfImageReader::NoteReader::Result::kNoMoreNotes);
// Find the note defined in elf_image_reader_test_note.S.
constexpr uint32_t kCrashpadNoteDesc = 42;
notes = reader.NotesWithNameAndType(
CRASHPAD_ELF_NOTE_NAME, CRASHPAD_ELF_NOTE_TYPE_SNAPSHOT_TEST, -1);
ASSERT_EQ(notes->NextNote(&note_name, &note_type, &note_desc),
ElfImageReader::NoteReader::Result::kSuccess);
EXPECT_EQ(note_name, CRASHPAD_ELF_NOTE_NAME);
EXPECT_EQ(note_type,
implicit_cast<unsigned int>(CRASHPAD_ELF_NOTE_TYPE_SNAPSHOT_TEST));
EXPECT_EQ(note_desc.size(), sizeof(kCrashpadNoteDesc));
EXPECT_EQ(*reinterpret_cast<decltype(kCrashpadNoteDesc)*>(&note_desc[0]),
kCrashpadNoteDesc);
EXPECT_EQ(notes->NextNote(&note_name, &note_type, &note_desc),
ElfImageReader::NoteReader::Result::kNoMoreNotes);
}
void ReadLibcInTarget(ProcessType process,
VMAddress elf_address,
VMAddress getpid_address) {
#if defined(ARCH_CPU_64_BITS)
constexpr bool am_64_bit = true;
#else
constexpr bool am_64_bit = false;
#endif // ARCH_CPU_64_BITS
ProcessMemoryNative memory;
ASSERT_TRUE(memory.Initialize(process));
ProcessMemoryRange range;
ASSERT_TRUE(range.Initialize(&memory, am_64_bit));
ElfImageReader reader;
ASSERT_TRUE(reader.Initialize(range, elf_address));
ExpectSymbol(&reader, "getpid", getpid_address);
}
TEST(ElfImageReader, MainExecutableSelf) {
ReadThisExecutableInTarget(
GetSelfProcess(),
FromPointerCast<VMAddress>(ElfImageReaderTestExportedSymbol));
}
CRASHPAD_CHILD_TEST_MAIN(ReadExecutableChild) {
VMAddress exported_symbol_address =
FromPointerCast<VMAddress>(ElfImageReaderTestExportedSymbol);
CheckedWriteFile(StdioFileHandle(StdioStream::kStandardOutput),
&exported_symbol_address,
sizeof(exported_symbol_address));
CheckedReadFileAtEOF(StdioFileHandle(StdioStream::kStandardInput));
return 0;
}
class ReadExecutableChildTest : public MultiprocessExec {
public:
ReadExecutableChildTest() : MultiprocessExec() {}
private:
void MultiprocessParent() {
// This read serves two purposes -- on Fuchsia, the loader may have not
// filled in debug address as soon as the child process handle is valid, so
// this causes a wait at least until the main() of the child, at which point
// it will always be valid. Secondarily, the address of the symbol to be
// looked up needs to be communicated.
VMAddress exported_symbol_address;
CheckedReadFileExactly(ReadPipeHandle(),
&exported_symbol_address,
sizeof(exported_symbol_address));
ReadThisExecutableInTarget(ChildProcess(), exported_symbol_address);
}
};
TEST(ElfImageReader, MainExecutableChild) {
ReadExecutableChildTest test;
test.SetChildTestMainFunction("ReadExecutableChild");
test.Run();
}
TEST(ElfImageReader, OneModuleSelf) {
Dl_info info;
ASSERT_TRUE(dladdr(reinterpret_cast<void*>(getpid), &info)) << "dladdr:"
<< dlerror();
VMAddress elf_address = FromPointerCast<VMAddress>(info.dli_fbase);
ReadLibcInTarget(
GetSelfProcess(), elf_address, FromPointerCast<VMAddress>(getpid));
}
CRASHPAD_CHILD_TEST_MAIN(ReadLibcChild) {
// Get the address of libc (by using getpid() as a representative member),
// and also the address of getpid() itself, and write them to the parent, so
// it can validate reading this information back out.
Dl_info info;
EXPECT_TRUE(dladdr(reinterpret_cast<void*>(getpid), &info))
<< "dladdr:" << dlerror();
VMAddress elf_address = FromPointerCast<VMAddress>(info.dli_fbase);
VMAddress getpid_address = FromPointerCast<VMAddress>(getpid);
CheckedWriteFile(StdioFileHandle(StdioStream::kStandardOutput),
&elf_address,
sizeof(elf_address));
CheckedWriteFile(StdioFileHandle(StdioStream::kStandardOutput),
&getpid_address,
sizeof(getpid_address));
CheckedReadFileAtEOF(StdioFileHandle(StdioStream::kStandardInput));
return 0;
}
class ReadLibcChildTest : public MultiprocessExec {
public:
ReadLibcChildTest() : MultiprocessExec() {}
~ReadLibcChildTest() {}
private:
void MultiprocessParent() {
VMAddress elf_address, getpid_address;
CheckedReadFileExactly(ReadPipeHandle(), &elf_address, sizeof(elf_address));
CheckedReadFileExactly(
ReadPipeHandle(), &getpid_address, sizeof(getpid_address));
ReadLibcInTarget(ChildProcess(), elf_address, getpid_address);
}
};
TEST(ElfImageReader, OneModuleChild) {
ReadLibcChildTest test;
test.SetChildTestMainFunction("ReadLibcChild");
test.Run();
}
#if defined(OS_FUCHSIA)
// crashpad_snapshot_test_both_dt_hash_styles is specially built and forced to
// include both .hash and .gnu.hash sections. Linux, Android, and Fuchsia have
// different defaults for which of these sections should be included; this test
// confirms that we get the same count from both sections.
//
// TODO(scottmg): Investigation in https://crrev.com/c/876879 resulted in
// realizing that ld.bfd does not emit a .gnu.hash that is very useful for this
// purpose when there's 0 exported entries in the module. This is not likely to
// be too important, as there's little need to look up non-exported symbols.
// However, it makes this test not work on Linux, where the default build uses
// ld.bfd. On Fuchsia, the only linker in use is lld, and it generates the
// expected .gnu.hash. So, for now, this test is only run on Fuchsia, not Linux.
//
// TODO(scottmg): Separately, the location of the ELF on Android needs some
// work, and then the test could also be enabled there.
TEST(ElfImageReader, DtHashAndDtGnuHashMatch) {
base::FilePath module_path =
TestPaths::BuildArtifact(FILE_PATH_LITERAL("snapshot"),
FILE_PATH_LITERAL("both_dt_hash_styles"),
TestPaths::FileType::kLoadableModule);
// TODO(scottmg): Remove this when upstream Fuchsia bug ZX-1619 is resolved.
// See also explanation in build/run_tests.py for Fuchsia .so files.
module_path = module_path.BaseName();
ScopedModuleHandle module(
dlopen(module_path.value().c_str(), RTLD_LAZY | RTLD_LOCAL));
ASSERT_TRUE(module.valid()) << "dlopen " << module_path.value() << ": "
<< dlerror();
#if defined(ARCH_CPU_64_BITS)
constexpr bool am_64_bit = true;
#else
constexpr bool am_64_bit = false;
#endif // ARCH_CPU_64_BITS
ProcessMemoryNative memory;
ASSERT_TRUE(memory.Initialize(GetSelfProcess()));
ProcessMemoryRange range;
ASSERT_TRUE(range.Initialize(&memory, am_64_bit));
struct link_map* lm = reinterpret_cast<struct link_map*>(module.get());
ElfImageReader reader;
ASSERT_TRUE(reader.Initialize(range, lm->l_addr));
VMSize from_dt_hash;
ASSERT_TRUE(reader.GetNumberOfSymbolEntriesFromDtHash(&from_dt_hash));
VMSize from_dt_gnu_hash;
ASSERT_TRUE(reader.GetNumberOfSymbolEntriesFromDtGnuHash(&from_dt_gnu_hash));
EXPECT_EQ(from_dt_hash, from_dt_gnu_hash);
}
#endif // OS_FUCHSIA
} // namespace
} // namespace test
} // namespace crashpad