mirror of
https://github.com/chromium/crashpad.git
synced 2024-12-31 01:43:03 +08:00
cc166d71f4
This is a follow-up to c8a016b99d97, following the post-landing discussion at https://chromium-review.googlesource.com/c/crashpad/crashpad/+/1393921/5#message-2058541d8c4505d20a990ab7734cd758e437a5f7 base::size, and std::size that will eventually replace it when C++17 is assured, does not allow the size of non-static data members to be taken in constant expression context. The remaining uses of ArraySize are in: minidump/minidump_exception_writer.cc (×1) minidump/minidump_system_info_writer.cc (×2, also uses base::size) snapshot/cpu_context.cc (×4, also uses base::size) util/misc/arraysize_test.cc (×10, of course) The first of these occurs when initializing a constexpr variable. All others are in expressions used with static_assert. Includes: Update mini_chromium to 737433ebade4d446643c6c07daae02a67e8deccao f701716d9546 Add Windows ARM64 build target to mini_chromium 87a95a3d6ac2 Remove the arraysize macro 1f7255ead1f7 Placate MSVC in areas of base::size usage 737433ebade4 Add cast Bug: chromium:837308 Change-Id: I6a5162654461b1bdd9b7b6864d0d71a734bcde19 Reviewed-on: https://chromium-review.googlesource.com/c/1396108 Commit-Queue: Mark Mentovai <mark@chromium.org> Reviewed-by: Mark Mentovai <mark@chromium.org>
266 lines
7.6 KiB
C++
266 lines
7.6 KiB
C++
// Copyright 2014 The Crashpad Authors. All rights reserved.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
#include "minidump/minidump_writable.h"
|
||
|
||
#include <stdint.h>
|
||
|
||
#include "base/logging.h"
|
||
#include "base/stl_util.h"
|
||
#include "util/file/file_writer.h"
|
||
#include "util/numeric/safe_assignment.h"
|
||
|
||
namespace {
|
||
|
||
constexpr size_t kMaximumAlignment = 16;
|
||
|
||
} // namespace
|
||
|
||
namespace crashpad {
|
||
namespace internal {
|
||
|
||
MinidumpWritable::~MinidumpWritable() {
|
||
}
|
||
|
||
bool MinidumpWritable::WriteEverything(FileWriterInterface* file_writer) {
|
||
DCHECK_EQ(state_, kStateMutable);
|
||
|
||
if (!Freeze()) {
|
||
return false;
|
||
}
|
||
|
||
DCHECK_EQ(state_, kStateFrozen);
|
||
|
||
FileOffset offset = 0;
|
||
std::vector<MinidumpWritable*> write_sequence;
|
||
size_t size = WillWriteAtOffset(kPhaseEarly, &offset, &write_sequence);
|
||
if (size == kInvalidSize) {
|
||
return false;
|
||
}
|
||
|
||
offset += size;
|
||
if (WillWriteAtOffset(kPhaseLate, &offset, &write_sequence) == kInvalidSize) {
|
||
return false;
|
||
}
|
||
|
||
DCHECK_EQ(state_, kStateWritable);
|
||
DCHECK_EQ(write_sequence.front(), this);
|
||
|
||
for (MinidumpWritable* writable : write_sequence) {
|
||
if (!writable->WritePaddingAndObject(file_writer)) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
DCHECK_EQ(state_, kStateWritten);
|
||
|
||
return true;
|
||
}
|
||
|
||
void MinidumpWritable::RegisterRVA(RVA* rva) {
|
||
DCHECK_LE(state_, kStateFrozen);
|
||
|
||
registered_rvas_.push_back(rva);
|
||
}
|
||
|
||
void MinidumpWritable::RegisterLocationDescriptor(
|
||
MINIDUMP_LOCATION_DESCRIPTOR* location_descriptor) {
|
||
DCHECK_LE(state_, kStateFrozen);
|
||
|
||
registered_location_descriptors_.push_back(location_descriptor);
|
||
}
|
||
|
||
MinidumpWritable::MinidumpWritable()
|
||
: registered_rvas_(),
|
||
registered_location_descriptors_(),
|
||
leading_pad_bytes_(0),
|
||
state_(kStateMutable) {
|
||
}
|
||
|
||
bool MinidumpWritable::Freeze() {
|
||
DCHECK_EQ(state_, kStateMutable);
|
||
state_ = kStateFrozen;
|
||
|
||
std::vector<MinidumpWritable*> children = Children();
|
||
for (MinidumpWritable* child : children) {
|
||
if (!child->Freeze()) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
size_t MinidumpWritable::Alignment() {
|
||
DCHECK_GE(state_, kStateFrozen);
|
||
|
||
return 4;
|
||
}
|
||
|
||
std::vector<MinidumpWritable*> MinidumpWritable::Children() {
|
||
DCHECK_GE(state_, kStateFrozen);
|
||
|
||
return std::vector<MinidumpWritable*>();
|
||
}
|
||
|
||
MinidumpWritable::Phase MinidumpWritable::WritePhase() {
|
||
return kPhaseEarly;
|
||
}
|
||
|
||
size_t MinidumpWritable::WillWriteAtOffset(
|
||
Phase phase,
|
||
FileOffset* offset,
|
||
std::vector<MinidumpWritable*>* write_sequence) {
|
||
FileOffset local_offset = *offset;
|
||
CHECK_GE(local_offset, 0);
|
||
|
||
size_t leading_pad_bytes_this_phase;
|
||
size_t size;
|
||
if (phase == WritePhase()) {
|
||
DCHECK_EQ(state_, kStateFrozen);
|
||
|
||
// Add this object to the sequence of MinidumpWritable objects to be
|
||
// written.
|
||
write_sequence->push_back(this);
|
||
|
||
size = SizeOfObject();
|
||
|
||
if (size > 0) {
|
||
// Honor this object’s request to be aligned to a specific byte boundary.
|
||
// Once the alignment is corrected, this object knows exactly what file
|
||
// offset it will be written at.
|
||
size_t alignment = Alignment();
|
||
CHECK_LE(alignment, kMaximumAlignment);
|
||
|
||
leading_pad_bytes_this_phase =
|
||
(alignment - (local_offset % alignment)) % alignment;
|
||
local_offset += leading_pad_bytes_this_phase;
|
||
*offset = local_offset;
|
||
} else {
|
||
// If the object is size 0, alignment is of no concern.
|
||
leading_pad_bytes_this_phase = 0;
|
||
}
|
||
leading_pad_bytes_ = leading_pad_bytes_this_phase;
|
||
|
||
// Now that the file offset that this object will be written at is known,
|
||
// let the subclass implementation know in case it’s interested.
|
||
if (!WillWriteAtOffsetImpl(local_offset)) {
|
||
return kInvalidSize;
|
||
}
|
||
|
||
// Populate the RVA fields in other objects that have registered to point to
|
||
// this one. Typically, a parent object will have registered to point to its
|
||
// children, but this can also occur where no parent-child relationship
|
||
// exists.
|
||
if (!registered_rvas_.empty() ||
|
||
!registered_location_descriptors_.empty()) {
|
||
RVA local_rva;
|
||
if (!AssignIfInRange(&local_rva, local_offset)) {
|
||
LOG(ERROR) << "offset " << local_offset << " out of range";
|
||
return kInvalidSize;
|
||
}
|
||
|
||
for (RVA* rva : registered_rvas_) {
|
||
*rva = local_rva;
|
||
}
|
||
|
||
if (!registered_location_descriptors_.empty()) {
|
||
decltype(registered_location_descriptors_[0]->DataSize) local_size;
|
||
if (!AssignIfInRange(&local_size, size)) {
|
||
LOG(ERROR) << "size " << size << " out of range";
|
||
return kInvalidSize;
|
||
}
|
||
|
||
for (MINIDUMP_LOCATION_DESCRIPTOR* location_descriptor :
|
||
registered_location_descriptors_) {
|
||
location_descriptor->DataSize = local_size;
|
||
location_descriptor->Rva = local_rva;
|
||
}
|
||
}
|
||
}
|
||
|
||
// This object is now considered writable. However, if it contains RVA or
|
||
// MINIDUMP_LOCATION_DESCRIPTOR fields, they may not be fully updated yet,
|
||
// because it’s the repsonsibility of these fields’ pointees to update them.
|
||
// Once WillWriteAtOffset has completed running for both phases on an entire
|
||
// tree, and the entire tree has moved into kStateFrozen, all RVA and
|
||
// MINIDUMP_LOCATION_DESCRIPTOR fields within that tree will be populated.
|
||
state_ = kStateWritable;
|
||
} else {
|
||
if (phase == kPhaseEarly) {
|
||
DCHECK_EQ(state_, kStateFrozen);
|
||
} else {
|
||
DCHECK_EQ(state_, kStateWritable);
|
||
}
|
||
|
||
size = 0;
|
||
leading_pad_bytes_this_phase = 0;
|
||
}
|
||
|
||
// Loop over children regardless of whether this object itself will write
|
||
// during this phase. An object’s children are not required to be written
|
||
// during the same phase as their parent.
|
||
std::vector<MinidumpWritable*> children = Children();
|
||
for (MinidumpWritable* child : children) {
|
||
// Use “auto” here because it’s impossible to know whether size_t (size) or
|
||
// FileOffset (local_offset) is the wider type, and thus what type the
|
||
// result of adding these two variables will have.
|
||
auto unaligned_child_offset = local_offset + size;
|
||
FileOffset child_offset;
|
||
if (!AssignIfInRange(&child_offset, unaligned_child_offset)) {
|
||
LOG(ERROR) << "offset " << unaligned_child_offset << " out of range";
|
||
return kInvalidSize;
|
||
}
|
||
|
||
size_t child_size =
|
||
child->WillWriteAtOffset(phase, &child_offset, write_sequence);
|
||
if (child_size == kInvalidSize) {
|
||
return kInvalidSize;
|
||
}
|
||
|
||
size += child_size;
|
||
}
|
||
|
||
return leading_pad_bytes_this_phase + size;
|
||
}
|
||
|
||
bool MinidumpWritable::WillWriteAtOffsetImpl(FileOffset offset) {
|
||
return true;
|
||
}
|
||
|
||
bool MinidumpWritable::WritePaddingAndObject(FileWriterInterface* file_writer) {
|
||
DCHECK_EQ(state_, kStateWritable);
|
||
|
||
// The number of elements in kZeroes must be at least one less than the
|
||
// maximum Alignment() ever encountered.
|
||
static constexpr uint8_t kZeroes[kMaximumAlignment - 1] = {};
|
||
DCHECK_LE(leading_pad_bytes_, base::size(kZeroes));
|
||
|
||
if (leading_pad_bytes_) {
|
||
if (!file_writer->Write(&kZeroes, leading_pad_bytes_)) {
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (!WriteObject(file_writer)) {
|
||
return false;
|
||
}
|
||
|
||
state_ = kStateWritten;
|
||
return true;
|
||
}
|
||
|
||
} // namespace internal
|
||
} // namespace crashpad
|