crashpad/minidump/minidump_memory_writer_test.cc
Scott Graham 9b6c69cbb5 Coalesce memory ranges
Follows https://chromium-review.googlesource.com/c/374019/.

Causes MinidumpMemoryListWriter to merge all overlapping ranges before
writing the MINIDUMP_MEMORY_LIST. This is:

1) Necessary for the Google internal crash processor, which in some
   cases attempts to read the raw memory (displaying ASAN red zones),
   and aborts if there are any overlapping ranges in the minidump on
   load;

2) Necessary for new-ish versions of windbg (see bug 216 below). It is
   believed that this is a change in behavior in the tool that made
   dumps with overlapping ranges unreadable;

3) More efficient. The .dmp for crashy_program goes from 306K to 140K
   with this enabled. In Chrome minidumps where
   set_gather_indirectly_referenced_memory() is used (in practice this
   means Chrome Windows Beta, Dev, and Canary), the savings are expected
   to be substantial.

Bug: crashpad:61, chromium:638370, crashpad:216

Change-Id: I969e1a52da555ceba59a727d933bfeef6787c7a5
Reviewed-on: https://chromium-review.googlesource.com/374539
Commit-Queue: Scott Graham <scottmg@chromium.org>
Reviewed-by: Mark Mentovai <mark@chromium.org>
2018-02-02 00:04:20 +00:00

651 lines
22 KiB
C++

// Copyright 2014 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "minidump/minidump_memory_writer.h"
#include <utility>
#include "base/format_macros.h"
#include "base/strings/stringprintf.h"
#include "gtest/gtest.h"
#include "minidump/minidump_extensions.h"
#include "minidump/minidump_file_writer.h"
#include "minidump/test/minidump_file_writer_test_util.h"
#include "minidump/test/minidump_memory_writer_test_util.h"
#include "minidump/test/minidump_writable_test_util.h"
#include "snapshot/test/test_memory_snapshot.h"
#include "util/file/string_file.h"
namespace crashpad {
namespace test {
namespace {
constexpr MinidumpStreamType kBogusStreamType =
static_cast<MinidumpStreamType>(1234);
// expected_streams is the expected number of streams in the file. The memory
// list must be the last stream. If there is another stream, it must come first,
// have stream type kBogusStreamType, and have zero-length data.
void GetMemoryListStream(const std::string& file_contents,
const MINIDUMP_MEMORY_LIST** memory_list,
const uint32_t expected_streams) {
constexpr size_t kDirectoryOffset = sizeof(MINIDUMP_HEADER);
const size_t kMemoryListStreamOffset =
kDirectoryOffset + expected_streams * sizeof(MINIDUMP_DIRECTORY);
const size_t kMemoryDescriptorsOffset =
kMemoryListStreamOffset + sizeof(MINIDUMP_MEMORY_LIST);
ASSERT_GE(file_contents.size(), kMemoryDescriptorsOffset);
const MINIDUMP_DIRECTORY* directory;
const MINIDUMP_HEADER* header =
MinidumpHeaderAtStart(file_contents, &directory);
ASSERT_NO_FATAL_FAILURE(VerifyMinidumpHeader(header, expected_streams, 0));
ASSERT_TRUE(directory);
size_t directory_index = 0;
if (expected_streams > 1) {
ASSERT_EQ(directory[directory_index].StreamType, kBogusStreamType);
ASSERT_EQ(directory[directory_index].Location.DataSize, 0u);
ASSERT_EQ(directory[directory_index].Location.Rva, kMemoryListStreamOffset);
++directory_index;
}
ASSERT_EQ(directory[directory_index].StreamType,
kMinidumpStreamTypeMemoryList);
EXPECT_EQ(directory[directory_index].Location.Rva, kMemoryListStreamOffset);
*memory_list = MinidumpWritableAtLocationDescriptor<MINIDUMP_MEMORY_LIST>(
file_contents, directory[directory_index].Location);
ASSERT_TRUE(memory_list);
}
TEST(MinidumpMemoryWriter, EmptyMemoryList) {
MinidumpFileWriter minidump_file_writer;
auto memory_list_writer = std::make_unique<MinidumpMemoryListWriter>();
ASSERT_TRUE(minidump_file_writer.AddStream(std::move(memory_list_writer)));
StringFile string_file;
ASSERT_TRUE(minidump_file_writer.WriteEverything(&string_file));
ASSERT_EQ(string_file.string().size(),
sizeof(MINIDUMP_HEADER) + sizeof(MINIDUMP_DIRECTORY) +
sizeof(MINIDUMP_MEMORY_LIST));
const MINIDUMP_MEMORY_LIST* memory_list = nullptr;
ASSERT_NO_FATAL_FAILURE(
GetMemoryListStream(string_file.string(), &memory_list, 1));
EXPECT_EQ(memory_list->NumberOfMemoryRanges, 0u);
}
TEST(MinidumpMemoryWriter, OneMemoryRegion) {
MinidumpFileWriter minidump_file_writer;
auto memory_list_writer = std::make_unique<MinidumpMemoryListWriter>();
constexpr uint64_t kBaseAddress = 0xfedcba9876543210;
constexpr size_t kSize = 0x1000;
constexpr uint8_t kValue = 'm';
auto memory_writer =
std::make_unique<TestMinidumpMemoryWriter>(kBaseAddress, kSize, kValue);
memory_list_writer->AddMemory(std::move(memory_writer));
ASSERT_TRUE(minidump_file_writer.AddStream(std::move(memory_list_writer)));
StringFile string_file;
ASSERT_TRUE(minidump_file_writer.WriteEverything(&string_file));
const MINIDUMP_MEMORY_LIST* memory_list = nullptr;
ASSERT_NO_FATAL_FAILURE(
GetMemoryListStream(string_file.string(), &memory_list, 1));
MINIDUMP_MEMORY_DESCRIPTOR expected;
expected.StartOfMemoryRange = kBaseAddress;
expected.Memory.DataSize = kSize;
expected.Memory.Rva =
sizeof(MINIDUMP_HEADER) + sizeof(MINIDUMP_DIRECTORY) +
sizeof(MINIDUMP_MEMORY_LIST) +
memory_list->NumberOfMemoryRanges * sizeof(MINIDUMP_MEMORY_DESCRIPTOR);
ExpectMinidumpMemoryDescriptorAndContents(&expected,
&memory_list->MemoryRanges[0],
string_file.string(),
kValue,
true);
}
TEST(MinidumpMemoryWriter, TwoMemoryRegions) {
MinidumpFileWriter minidump_file_writer;
auto memory_list_writer = std::make_unique<MinidumpMemoryListWriter>();
constexpr uint64_t kBaseAddress0 = 0xc0ffee;
constexpr size_t kSize0 = 0x0100;
constexpr uint8_t kValue0 = '6';
constexpr uint64_t kBaseAddress1 = 0xfac00fac;
constexpr size_t kSize1 = 0x0200;
constexpr uint8_t kValue1 = '!';
auto memory_writer_0 = std::make_unique<TestMinidumpMemoryWriter>(
kBaseAddress0, kSize0, kValue0);
memory_list_writer->AddMemory(std::move(memory_writer_0));
auto memory_writer_1 = std::make_unique<TestMinidumpMemoryWriter>(
kBaseAddress1, kSize1, kValue1);
memory_list_writer->AddMemory(std::move(memory_writer_1));
ASSERT_TRUE(minidump_file_writer.AddStream(std::move(memory_list_writer)));
StringFile string_file;
ASSERT_TRUE(minidump_file_writer.WriteEverything(&string_file));
const MINIDUMP_MEMORY_LIST* memory_list = nullptr;
ASSERT_NO_FATAL_FAILURE(
GetMemoryListStream(string_file.string(), &memory_list, 1));
EXPECT_EQ(memory_list->NumberOfMemoryRanges, 2u);
MINIDUMP_MEMORY_DESCRIPTOR expected;
{
SCOPED_TRACE("region 0");
expected.StartOfMemoryRange = kBaseAddress0;
expected.Memory.DataSize = kSize0;
expected.Memory.Rva =
sizeof(MINIDUMP_HEADER) + sizeof(MINIDUMP_DIRECTORY) +
sizeof(MINIDUMP_MEMORY_LIST) +
memory_list->NumberOfMemoryRanges * sizeof(MINIDUMP_MEMORY_DESCRIPTOR);
ExpectMinidumpMemoryDescriptorAndContents(&expected,
&memory_list->MemoryRanges[0],
string_file.string(),
kValue0,
false);
}
{
SCOPED_TRACE("region 1");
expected.StartOfMemoryRange = kBaseAddress1;
expected.Memory.DataSize = kSize1;
expected.Memory.Rva = memory_list->MemoryRanges[0].Memory.Rva +
memory_list->MemoryRanges[0].Memory.DataSize;
ExpectMinidumpMemoryDescriptorAndContents(&expected,
&memory_list->MemoryRanges[1],
string_file.string(),
kValue1,
true);
}
}
class TestMemoryStream final : public internal::MinidumpStreamWriter {
public:
TestMemoryStream(uint64_t base_address, size_t size, uint8_t value)
: MinidumpStreamWriter(), memory_(base_address, size, value) {}
~TestMemoryStream() override {}
TestMinidumpMemoryWriter* memory() {
return &memory_;
}
// MinidumpStreamWriter:
MinidumpStreamType StreamType() const override {
return kBogusStreamType;
}
protected:
// MinidumpWritable:
size_t SizeOfObject() override {
EXPECT_GE(state(), kStateFrozen);
return 0;
}
std::vector<MinidumpWritable*> Children() override {
EXPECT_GE(state(), kStateFrozen);
std::vector<MinidumpWritable*> children(1, memory());
return children;
}
bool WriteObject(FileWriterInterface* file_writer) override {
EXPECT_EQ(state(), kStateWritable);
return true;
}
private:
TestMinidumpMemoryWriter memory_;
DISALLOW_COPY_AND_ASSIGN(TestMemoryStream);
};
TEST(MinidumpMemoryWriter, ExtraMemory) {
// This tests MinidumpMemoryListWriter::AddExtraMemory(). That method adds
// a MinidumpMemoryWriter to the MinidumpMemoryListWriter without making the
// memory writer a child of the memory list writer.
MinidumpFileWriter minidump_file_writer;
constexpr uint64_t kBaseAddress0 = 0x1000;
constexpr size_t kSize0 = 0x0400;
constexpr uint8_t kValue0 = '1';
auto test_memory_stream =
std::make_unique<TestMemoryStream>(kBaseAddress0, kSize0, kValue0);
auto memory_list_writer = std::make_unique<MinidumpMemoryListWriter>();
memory_list_writer->AddNonOwnedMemory(test_memory_stream->memory());
ASSERT_TRUE(minidump_file_writer.AddStream(std::move(test_memory_stream)));
constexpr uint64_t kBaseAddress1 = 0x2000;
constexpr size_t kSize1 = 0x0400;
constexpr uint8_t kValue1 = 'm';
auto memory_writer = std::make_unique<TestMinidumpMemoryWriter>(
kBaseAddress1, kSize1, kValue1);
memory_list_writer->AddMemory(std::move(memory_writer));
ASSERT_TRUE(minidump_file_writer.AddStream(std::move(memory_list_writer)));
StringFile string_file;
ASSERT_TRUE(minidump_file_writer.WriteEverything(&string_file));
const MINIDUMP_MEMORY_LIST* memory_list = nullptr;
ASSERT_NO_FATAL_FAILURE(
GetMemoryListStream(string_file.string(), &memory_list, 2));
EXPECT_EQ(memory_list->NumberOfMemoryRanges, 2u);
MINIDUMP_MEMORY_DESCRIPTOR expected;
{
SCOPED_TRACE("region 0");
expected.StartOfMemoryRange = kBaseAddress0;
expected.Memory.DataSize = kSize0;
expected.Memory.Rva =
sizeof(MINIDUMP_HEADER) + 2 * sizeof(MINIDUMP_DIRECTORY) +
sizeof(MINIDUMP_MEMORY_LIST) +
memory_list->NumberOfMemoryRanges * sizeof(MINIDUMP_MEMORY_DESCRIPTOR);
ExpectMinidumpMemoryDescriptorAndContents(&expected,
&memory_list->MemoryRanges[0],
string_file.string(),
kValue0,
false);
}
{
SCOPED_TRACE("region 1");
expected.StartOfMemoryRange = kBaseAddress1;
expected.Memory.DataSize = kSize1;
expected.Memory.Rva = memory_list->MemoryRanges[0].Memory.Rva +
memory_list->MemoryRanges[0].Memory.DataSize;
ExpectMinidumpMemoryDescriptorAndContents(&expected,
&memory_list->MemoryRanges[1],
string_file.string(),
kValue1,
true);
}
}
TEST(MinidumpMemoryWriter, AddFromSnapshot) {
MINIDUMP_MEMORY_DESCRIPTOR expect_memory_descriptors[3] = {};
uint8_t values[arraysize(expect_memory_descriptors)] = {};
expect_memory_descriptors[0].StartOfMemoryRange = 0;
expect_memory_descriptors[0].Memory.DataSize = 0x1000;
values[0] = 0x01;
expect_memory_descriptors[1].StartOfMemoryRange = 0x2000;
expect_memory_descriptors[1].Memory.DataSize = 0x2000;
values[1] = 0xf4;
expect_memory_descriptors[2].StartOfMemoryRange = 0x7654321000000000;
expect_memory_descriptors[2].Memory.DataSize = 0x800;
values[2] = 0xa9;
std::vector<std::unique_ptr<TestMemorySnapshot>> memory_snapshots_owner;
std::vector<const MemorySnapshot*> memory_snapshots;
for (size_t index = 0;
index < arraysize(expect_memory_descriptors);
++index) {
memory_snapshots_owner.push_back(std::make_unique<TestMemorySnapshot>());
TestMemorySnapshot* memory_snapshot = memory_snapshots_owner.back().get();
memory_snapshot->SetAddress(
expect_memory_descriptors[index].StartOfMemoryRange);
memory_snapshot->SetSize(expect_memory_descriptors[index].Memory.DataSize);
memory_snapshot->SetValue(values[index]);
memory_snapshots.push_back(memory_snapshot);
}
auto memory_list_writer = std::make_unique<MinidumpMemoryListWriter>();
memory_list_writer->AddFromSnapshot(memory_snapshots);
MinidumpFileWriter minidump_file_writer;
ASSERT_TRUE(minidump_file_writer.AddStream(std::move(memory_list_writer)));
StringFile string_file;
ASSERT_TRUE(minidump_file_writer.WriteEverything(&string_file));
const MINIDUMP_MEMORY_LIST* memory_list = nullptr;
ASSERT_NO_FATAL_FAILURE(
GetMemoryListStream(string_file.string(), &memory_list, 1));
ASSERT_EQ(memory_list->NumberOfMemoryRanges, 3u);
for (size_t index = 0; index < memory_list->NumberOfMemoryRanges; ++index) {
SCOPED_TRACE(base::StringPrintf("index %" PRIuS, index));
ExpectMinidumpMemoryDescriptorAndContents(
&expect_memory_descriptors[index],
&memory_list->MemoryRanges[index],
string_file.string(),
values[index],
index == memory_list->NumberOfMemoryRanges - 1);
}
}
TEST(MinidumpMemoryWriter, CoalesceExplicitMultiple) {
MINIDUMP_MEMORY_DESCRIPTOR expect_memory_descriptors[4] = {};
uint8_t values[arraysize(expect_memory_descriptors)] = {};
expect_memory_descriptors[0].StartOfMemoryRange = 0;
expect_memory_descriptors[0].Memory.DataSize = 1000;
values[0] = 0x01;
expect_memory_descriptors[1].StartOfMemoryRange = 10000;
expect_memory_descriptors[1].Memory.DataSize = 2000;
values[1] = 0xf4;
expect_memory_descriptors[2].StartOfMemoryRange = 0x1111111111111111;
expect_memory_descriptors[2].Memory.DataSize = 1024;
values[2] = 0x99;
expect_memory_descriptors[3].StartOfMemoryRange = 0xfedcba9876543210;
expect_memory_descriptors[3].Memory.DataSize = 1024;
values[3] = 0x88;
struct {
uint64_t base;
size_t size;
uint8_t value;
} snapshots_to_add[] = {
// Various overlapping.
{0, 500, 0x01},
{0, 500, 0x01},
{250, 500, 0x01},
{600, 400, 0x01},
// Empty removed.
{0, 0, 0xbb},
{300, 0, 0xcc},
{1000, 0, 0xdd},
{12000, 0, 0xee},
// Abutting.
{10000, 500, 0xf4},
{10500, 500, 0xf4},
{11000, 1000, 0xf4},
// Large base addresses.
{ 0xfedcba9876543210, 1024, 0x88 },
{ 0x1111111111111111, 1024, 0x99 },
};
std::vector<std::unique_ptr<TestMemorySnapshot>> memory_snapshots_owner;
std::vector<const MemorySnapshot*> memory_snapshots;
for (const auto& to_add : snapshots_to_add) {
memory_snapshots_owner.push_back(std::make_unique<TestMemorySnapshot>());
TestMemorySnapshot* memory_snapshot = memory_snapshots_owner.back().get();
memory_snapshot->SetAddress(to_add.base);
memory_snapshot->SetSize(to_add.size);
memory_snapshot->SetValue(to_add.value);
memory_snapshots.push_back(memory_snapshot);
}
auto memory_list_writer = std::make_unique<MinidumpMemoryListWriter>();
memory_list_writer->AddFromSnapshot(memory_snapshots);
MinidumpFileWriter minidump_file_writer;
minidump_file_writer.AddStream(std::move(memory_list_writer));
StringFile string_file;
ASSERT_TRUE(minidump_file_writer.WriteEverything(&string_file));
const MINIDUMP_MEMORY_LIST* memory_list = nullptr;
ASSERT_NO_FATAL_FAILURE(
GetMemoryListStream(string_file.string(), &memory_list, 1));
ASSERT_EQ(4u, memory_list->NumberOfMemoryRanges);
for (size_t index = 0; index < memory_list->NumberOfMemoryRanges; ++index) {
SCOPED_TRACE(base::StringPrintf("index %" PRIuS, index));
ExpectMinidumpMemoryDescriptorAndContents(
&expect_memory_descriptors[index],
&memory_list->MemoryRanges[index],
string_file.string(),
values[index],
index == memory_list->NumberOfMemoryRanges - 1);
}
}
struct TestRange {
TestRange(uint64_t base, size_t size) : base(base), size(size) {}
uint64_t base;
size_t size;
};
// Parses a string spec to build a list of ranges suitable for CoalesceTest().
std::vector<TestRange> ParseCoalesceSpec(const char* spec) {
std::vector<TestRange> result;
enum { kNone, kSpace, kDot } state = kNone;
const char* range_started_at = nullptr;
for (const char* p = spec;; ++p) {
EXPECT_TRUE(*p == ' ' || *p == '.' || *p == 0);
if (*p == ' ' || *p == 0) {
if (state == kDot) {
result.push_back(
TestRange(range_started_at - spec, p - range_started_at));
}
state = kSpace;
range_started_at = nullptr;
} else if (*p == '.') {
if (state != kDot) {
range_started_at = p;
state = kDot;
}
}
if (*p == 0)
break;
}
return result;
}
TEST(MinidumpMemoryWriter, CoalesceSpecHelperParse) {
const auto empty = ParseCoalesceSpec("");
ASSERT_EQ(empty.size(), 0u);
const auto a = ParseCoalesceSpec("...");
ASSERT_EQ(a.size(), 1u);
EXPECT_EQ(a[0].base, 0u);
EXPECT_EQ(a[0].size, 3u);
const auto b = ParseCoalesceSpec(" ...");
ASSERT_EQ(b.size(), 1u);
EXPECT_EQ(b[0].base, 2u);
EXPECT_EQ(b[0].size, 3u);
const auto c = ParseCoalesceSpec(" ... ");
ASSERT_EQ(c.size(), 1u);
EXPECT_EQ(c[0].base, 2u);
EXPECT_EQ(c[0].size, 3u);
const auto d = ParseCoalesceSpec(" ... ....");
ASSERT_EQ(d.size(), 2u);
EXPECT_EQ(d[0].base, 2u);
EXPECT_EQ(d[0].size, 3u);
EXPECT_EQ(d[1].base, 7u);
EXPECT_EQ(d[1].size, 4u);
const auto e = ParseCoalesceSpec(" ... ...... ... ");
ASSERT_EQ(e.size(), 3u);
EXPECT_EQ(e[0].base, 2u);
EXPECT_EQ(e[0].size, 3u);
EXPECT_EQ(e[1].base, 7u);
EXPECT_EQ(e[1].size, 6u);
EXPECT_EQ(e[2].base, 14u);
EXPECT_EQ(e[2].size, 3u);
}
constexpr uint8_t kMemoryValue = 0xcd;
// Builds a coalesce test out of specs of ' ' and '.'. Tests that when the two
// ranges are added and coalesced, the result is equal to expected.
void CoalesceTest(const char* r1_spec,
const char* r2_spec,
const char* expected_spec) {
auto r1 = ParseCoalesceSpec(r1_spec);
auto r2 = ParseCoalesceSpec(r2_spec);
auto expected = ParseCoalesceSpec(expected_spec);
std::vector<MINIDUMP_MEMORY_DESCRIPTOR> expect_memory_descriptors;
for (const auto& range : expected) {
MINIDUMP_MEMORY_DESCRIPTOR mmd = {};
mmd.StartOfMemoryRange = range.base;
mmd.Memory.DataSize = static_cast<uint32_t>(range.size);
expect_memory_descriptors.push_back(mmd);
}
std::vector<std::unique_ptr<TestMemorySnapshot>> memory_snapshots_owner;
std::vector<const MemorySnapshot*> memory_snapshots;
const auto add_test_memory_snapshots = [&memory_snapshots_owner,
&memory_snapshots](
std::vector<TestRange> ranges) {
for (const auto& r : ranges) {
memory_snapshots_owner.push_back(std::make_unique<TestMemorySnapshot>());
TestMemorySnapshot* memory_snapshot = memory_snapshots_owner.back().get();
memory_snapshot->SetAddress(r.base);
memory_snapshot->SetSize(r.size);
memory_snapshot->SetValue(kMemoryValue);
memory_snapshots.push_back(memory_snapshot);
}
};
add_test_memory_snapshots(r1);
add_test_memory_snapshots(r2);
auto memory_list_writer = std::make_unique<MinidumpMemoryListWriter>();
memory_list_writer->AddFromSnapshot(memory_snapshots);
MinidumpFileWriter minidump_file_writer;
minidump_file_writer.AddStream(std::move(memory_list_writer));
StringFile string_file;
ASSERT_TRUE(minidump_file_writer.WriteEverything(&string_file));
const MINIDUMP_MEMORY_LIST* memory_list = nullptr;
ASSERT_NO_FATAL_FAILURE(
GetMemoryListStream(string_file.string(), &memory_list, 1));
ASSERT_EQ(expected.size(), memory_list->NumberOfMemoryRanges);
for (size_t index = 0; index < memory_list->NumberOfMemoryRanges; ++index) {
SCOPED_TRACE(base::StringPrintf("index %" PRIuS, index));
ExpectMinidumpMemoryDescriptorAndContents(
&expect_memory_descriptors[index],
&memory_list->MemoryRanges[index],
string_file.string(),
kMemoryValue,
index == memory_list->NumberOfMemoryRanges - 1);
}
}
TEST(MinidumpMemoryWriter, CoalescePairsVariousCases) {
// clang-format off
CoalesceTest(" .........",
" .......",
/* result */ " ..............");
CoalesceTest(" .......",
" .........",
/* result */ " ..............");
CoalesceTest(" ...",
" .........",
/* result */ " .........");
CoalesceTest(" .........",
" ......",
/* result */ " .........");
CoalesceTest(" ...",
" ........",
/* result */ " ........");
CoalesceTest(" ........",
" ...",
/* result */ " ........");
CoalesceTest(" ...",
" ........",
/* result */ " ........");
CoalesceTest(" ........",
" ...",
/* result */ " ........");
CoalesceTest(" ... ",
" ...",
/* result */ " ... ...");
CoalesceTest(" ...",
" ... ",
/* result */ " ... ...");
CoalesceTest("...",
".....",
/* result */ ".....");
CoalesceTest("...",
" ..",
/* result */ ".....");
CoalesceTest(" .....",
" ..",
/* result */ " .......");
CoalesceTest(" ......... ......",
" .......",
/* result */ " ..................");
CoalesceTest(" .......",
" ......... ......",
/* result */ " ..................");
CoalesceTest(" .....",
" ......... ......",
/* result */ " ......... ......");
CoalesceTest(" ......... ....... .... .",
" ......... ...... ....",
/* result */ " .......................... .......");
// clang-format on
}
} // namespace
} // namespace test
} // namespace crashpad