mirror of
https://github.com/chromium/crashpad.git
synced 2025-01-22 07:29:36 +08:00
0cc86a24f9
Use ScopedForbidReturn in ProcessReader::InitializeThreads(). TEST=util_test ScopedForbidReturn*.* R=rsesek@chromium.org Review URL: https://codereview.chromium.org/493203005
534 lines
19 KiB
C++
534 lines
19 KiB
C++
// Copyright 2014 The Crashpad Authors. All rights reserved.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
#include "util/mac/process_reader.h"
|
||
|
||
#include <AvailabilityMacros.h>
|
||
#include <mach/mach_vm.h>
|
||
#include <mach-o/loader.h>
|
||
|
||
#include <algorithm>
|
||
|
||
#include "base/logging.h"
|
||
#include "base/mac/mach_logging.h"
|
||
#include "base/mac/scoped_mach_port.h"
|
||
#include "base/mac/scoped_mach_vm.h"
|
||
#include "util/misc/scoped_forbid_return.h"
|
||
|
||
namespace {
|
||
|
||
void MachTimeValueToTimeval(const time_value& mach, timeval* tv) {
|
||
tv->tv_sec = mach.seconds;
|
||
tv->tv_usec = mach.microseconds;
|
||
}
|
||
|
||
kern_return_t MachVMRegionRecurseDeepest(mach_port_t task,
|
||
mach_vm_address_t* address,
|
||
mach_vm_size_t* size,
|
||
natural_t* depth,
|
||
vm_prot_t* protection,
|
||
unsigned int* user_tag) {
|
||
vm_region_submap_short_info_64 submap_info;
|
||
mach_msg_type_number_t count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64;
|
||
while (true) {
|
||
kern_return_t kr = mach_vm_region_recurse(
|
||
task,
|
||
address,
|
||
size,
|
||
depth,
|
||
reinterpret_cast<vm_region_recurse_info_t>(&submap_info),
|
||
&count);
|
||
if (kr != KERN_SUCCESS) {
|
||
return kr;
|
||
}
|
||
|
||
if (!submap_info.is_submap) {
|
||
*protection = submap_info.protection;
|
||
*user_tag = submap_info.user_tag;
|
||
return KERN_SUCCESS;
|
||
}
|
||
|
||
++*depth;
|
||
}
|
||
}
|
||
|
||
} // namespace
|
||
|
||
namespace crashpad {
|
||
|
||
ProcessReaderThread::ProcessReaderThread()
|
||
: thread_context(),
|
||
float_context(),
|
||
debug_context(),
|
||
id(0),
|
||
stack_region_address(0),
|
||
stack_region_size(0),
|
||
thread_specific_data_address(0),
|
||
port(MACH_PORT_NULL),
|
||
suspend_count(0),
|
||
priority(0) {
|
||
}
|
||
|
||
ProcessReaderModule::ProcessReaderModule() : name(), address(0), timestamp(0) {
|
||
}
|
||
|
||
ProcessReaderModule::~ProcessReaderModule() {
|
||
}
|
||
|
||
ProcessReader::ProcessReader()
|
||
: kern_proc_info_(),
|
||
threads_(),
|
||
modules_(),
|
||
task_memory_(),
|
||
task_(MACH_PORT_NULL),
|
||
initialized_(),
|
||
is_64_bit_(false),
|
||
initialized_threads_(false),
|
||
initialized_modules_(false) {
|
||
}
|
||
|
||
ProcessReader::~ProcessReader() {
|
||
for (const ProcessReaderThread& thread : threads_) {
|
||
kern_return_t kr = mach_port_deallocate(mach_task_self(), thread.port);
|
||
MACH_LOG_IF(ERROR, kr != KERN_SUCCESS, kr) << "mach_port_deallocate";
|
||
}
|
||
}
|
||
|
||
bool ProcessReader::Initialize(mach_port_t task) {
|
||
INITIALIZATION_STATE_SET_INITIALIZING(initialized_);
|
||
|
||
pid_t pid;
|
||
kern_return_t kr = pid_for_task(task, &pid);
|
||
if (kr != KERN_SUCCESS) {
|
||
MACH_LOG(ERROR, kr) << "pid_for_task";
|
||
return false;
|
||
}
|
||
|
||
int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_PID, pid};
|
||
size_t len = sizeof(kern_proc_info_);
|
||
if (sysctl(mib, arraysize(mib), &kern_proc_info_, &len, NULL, 0) != 0) {
|
||
PLOG(ERROR) << "sysctl for pid " << pid;
|
||
return false;
|
||
}
|
||
|
||
DCHECK_EQ(kern_proc_info_.kp_proc.p_pid, pid);
|
||
|
||
is_64_bit_ = kern_proc_info_.kp_proc.p_flag & P_LP64;
|
||
|
||
task_memory_.reset(new TaskMemory(task));
|
||
task_ = task;
|
||
|
||
INITIALIZATION_STATE_SET_VALID(initialized_);
|
||
return true;
|
||
}
|
||
|
||
void ProcessReader::StartTime(timeval* start_time) const {
|
||
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
|
||
*start_time = kern_proc_info_.kp_proc.p_starttime;
|
||
}
|
||
|
||
bool ProcessReader::CPUTimes(timeval* user_time, timeval* system_time) const {
|
||
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
|
||
|
||
// Calculate user and system time the same way the kernel does for
|
||
// getrusage(). See 10.9.2 xnu-2422.90.20/bsd/kern/kern_resource.c calcru().
|
||
timerclear(user_time);
|
||
timerclear(system_time);
|
||
|
||
// As of the 10.8 SDK, the preferred routine is MACH_TASK_BASIC_INFO.
|
||
// TASK_BASIC_INFO_64_COUNT is equivalent and works on earlier systems.
|
||
task_basic_info_64 task_basic_info;
|
||
mach_msg_type_number_t task_basic_info_count = TASK_BASIC_INFO_64_COUNT;
|
||
kern_return_t kr = task_info(task_,
|
||
TASK_BASIC_INFO_64,
|
||
reinterpret_cast<task_info_t>(&task_basic_info),
|
||
&task_basic_info_count);
|
||
if (kr != KERN_SUCCESS) {
|
||
MACH_LOG(WARNING, kr) << "task_info TASK_BASIC_INFO_64";
|
||
return false;
|
||
}
|
||
|
||
task_thread_times_info_data_t task_thread_times;
|
||
mach_msg_type_number_t task_thread_times_count = TASK_THREAD_TIMES_INFO_COUNT;
|
||
kr = task_info(task_,
|
||
TASK_THREAD_TIMES_INFO,
|
||
reinterpret_cast<task_info_t>(&task_thread_times),
|
||
&task_thread_times_count);
|
||
if (kr != KERN_SUCCESS) {
|
||
MACH_LOG(WARNING, kr) << "task_info TASK_THREAD_TIMES";
|
||
return false;
|
||
}
|
||
|
||
MachTimeValueToTimeval(task_basic_info.user_time, user_time);
|
||
MachTimeValueToTimeval(task_basic_info.system_time, system_time);
|
||
|
||
timeval thread_user_time;
|
||
MachTimeValueToTimeval(task_thread_times.user_time, &thread_user_time);
|
||
timeval thread_system_time;
|
||
MachTimeValueToTimeval(task_thread_times.system_time, &thread_system_time);
|
||
|
||
timeradd(user_time, &thread_user_time, user_time);
|
||
timeradd(system_time, &thread_system_time, system_time);
|
||
|
||
return true;
|
||
}
|
||
|
||
const std::vector<ProcessReaderThread>& ProcessReader::Threads() {
|
||
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
|
||
|
||
if (!initialized_threads_) {
|
||
InitializeThreads();
|
||
}
|
||
|
||
return threads_;
|
||
}
|
||
|
||
const std::vector<ProcessReaderModule>& ProcessReader::Modules() {
|
||
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
|
||
|
||
if (!initialized_modules_) {
|
||
InitializeModules();
|
||
}
|
||
|
||
return modules_;
|
||
}
|
||
|
||
void ProcessReader::InitializeThreads() {
|
||
DCHECK(!initialized_threads_);
|
||
DCHECK(threads_.empty());
|
||
|
||
initialized_threads_ = true;
|
||
|
||
thread_act_array_t threads;
|
||
mach_msg_type_number_t thread_count = 0;
|
||
kern_return_t kr = task_threads(task_, &threads, &thread_count);
|
||
if (kr != KERN_SUCCESS) {
|
||
MACH_LOG(WARNING, kr) << "task_threads";
|
||
return;
|
||
}
|
||
|
||
// The send rights in the |threads| array won’t have their send rights managed
|
||
// by anything until they’re added to |threads_| by the loop below. Any early
|
||
// return (or exception) that happens between here and the completion of the
|
||
// loop below will leak thread port send rights.
|
||
ScopedForbidReturn threads_need_owners;
|
||
|
||
base::mac::ScopedMachVM threads_vm(
|
||
reinterpret_cast<vm_address_t>(threads),
|
||
mach_vm_round_page(thread_count * sizeof(*threads)));
|
||
|
||
for (size_t index = 0; index < thread_count; ++index) {
|
||
ProcessReaderThread thread;
|
||
thread.port = threads[index];
|
||
|
||
#if defined(ARCH_CPU_X86_FAMILY)
|
||
const thread_state_flavor_t kThreadStateFlavor =
|
||
Is64Bit() ? x86_THREAD_STATE64 : x86_THREAD_STATE32;
|
||
mach_msg_type_number_t thread_state_count =
|
||
Is64Bit() ? x86_THREAD_STATE64_COUNT : x86_THREAD_STATE32_COUNT;
|
||
|
||
// TODO(mark): Use the AVX variants instead of the FLOAT variants? They’re
|
||
// supported on 10.6 and later.
|
||
const thread_state_flavor_t kFloatStateFlavor =
|
||
Is64Bit() ? x86_FLOAT_STATE64 : x86_FLOAT_STATE32;
|
||
mach_msg_type_number_t float_state_count =
|
||
Is64Bit() ? x86_FLOAT_STATE64_COUNT : x86_FLOAT_STATE32_COUNT;
|
||
|
||
const thread_state_flavor_t kDebugStateFlavor =
|
||
Is64Bit() ? x86_DEBUG_STATE64 : x86_DEBUG_STATE32;
|
||
mach_msg_type_number_t debug_state_count =
|
||
Is64Bit() ? x86_DEBUG_STATE64_COUNT : x86_DEBUG_STATE32_COUNT;
|
||
#endif
|
||
|
||
kr = thread_get_state(
|
||
thread.port,
|
||
kThreadStateFlavor,
|
||
reinterpret_cast<thread_state_t>(&thread.thread_context),
|
||
&thread_state_count);
|
||
if (kr != KERN_SUCCESS) {
|
||
MACH_LOG(ERROR, kr) << "thread_get_state(" << kThreadStateFlavor << ")";
|
||
continue;
|
||
}
|
||
|
||
kr = thread_get_state(
|
||
thread.port,
|
||
kFloatStateFlavor,
|
||
reinterpret_cast<thread_state_t>(&thread.float_context),
|
||
&float_state_count);
|
||
if (kr != KERN_SUCCESS) {
|
||
MACH_LOG(ERROR, kr) << "thread_get_state(" << kFloatStateFlavor << ")";
|
||
continue;
|
||
}
|
||
|
||
kr = thread_get_state(
|
||
thread.port,
|
||
kDebugStateFlavor,
|
||
reinterpret_cast<thread_state_t>(&thread.debug_context),
|
||
&debug_state_count);
|
||
if (kr != KERN_SUCCESS) {
|
||
MACH_LOG(ERROR, kr) << "thread_get_state(" << kDebugStateFlavor << ")";
|
||
continue;
|
||
}
|
||
|
||
thread_basic_info basic_info;
|
||
mach_msg_type_number_t count = THREAD_BASIC_INFO_COUNT;
|
||
kr = thread_info(thread.port,
|
||
THREAD_BASIC_INFO,
|
||
reinterpret_cast<thread_info_t>(&basic_info),
|
||
&count);
|
||
if (kr != KERN_SUCCESS) {
|
||
MACH_LOG(WARNING, kr) << "thread_info(THREAD_BASIC_INFO)";
|
||
} else {
|
||
thread.suspend_count = basic_info.suspend_count;
|
||
}
|
||
|
||
thread_identifier_info identifier_info;
|
||
count = THREAD_IDENTIFIER_INFO_COUNT;
|
||
kr = thread_info(thread.port,
|
||
THREAD_IDENTIFIER_INFO,
|
||
reinterpret_cast<thread_info_t>(&identifier_info),
|
||
&count);
|
||
if (kr != KERN_SUCCESS) {
|
||
MACH_LOG(WARNING, kr) << "thread_info(THREAD_IDENTIFIER_INFO)";
|
||
} else {
|
||
thread.id = identifier_info.thread_id;
|
||
|
||
// thread_identifier_info::thread_handle contains the base of the
|
||
// thread-specific data area, which on x86 and x86_64 is the thread’s base
|
||
// address of the %gs segment. 10.9.2 xnu-2422.90.20/osfmk/kern/thread.c
|
||
// thread_info_internal() gets the value from
|
||
// machine_thread::cthread_self, which is the same value used to set the
|
||
// %gs base in xnu-2422.90.20/osfmk/i386/pcb_native.c
|
||
// act_machine_switch_pcb().
|
||
//
|
||
// This address is the internal pthread’s _pthread::tsd[], an array of
|
||
// void* values that can be indexed by pthread_key_t values.
|
||
thread.thread_specific_data_address = identifier_info.thread_handle;
|
||
}
|
||
|
||
thread_precedence_policy precedence;
|
||
count = THREAD_PRECEDENCE_POLICY_COUNT;
|
||
boolean_t get_default = FALSE;
|
||
kr = thread_policy_get(thread.port,
|
||
THREAD_PRECEDENCE_POLICY,
|
||
reinterpret_cast<thread_policy_t>(&precedence),
|
||
&count,
|
||
&get_default);
|
||
if (kr != KERN_SUCCESS) {
|
||
MACH_LOG(INFO, kr) << "thread_policy_get";
|
||
} else {
|
||
thread.priority = precedence.importance;
|
||
}
|
||
|
||
#if defined(ARCH_CPU_X86_FAMILY)
|
||
mach_vm_address_t stack_pointer = Is64Bit()
|
||
? thread.thread_context.t64.__rsp
|
||
: thread.thread_context.t32.__esp;
|
||
#endif
|
||
|
||
thread.stack_region_address =
|
||
CalculateStackRegion(stack_pointer, &thread.stack_region_size);
|
||
|
||
threads_.push_back(thread);
|
||
}
|
||
|
||
threads_need_owners.Disarm();
|
||
}
|
||
|
||
void ProcessReader::InitializeModules() {
|
||
DCHECK(!initialized_modules_);
|
||
DCHECK(modules_.empty());
|
||
|
||
initialized_modules_ = true;
|
||
|
||
// TODO(mark): Complete this implementation. The implementation depends on
|
||
// process_types, which cannot land yet because it depends on this file,
|
||
// process_reader. This temporary “cut” was made to avoid a review that’s too
|
||
// large. Yes, this circular dependency is unfortunate. Suggestions are
|
||
// welcome.
|
||
}
|
||
|
||
mach_vm_address_t ProcessReader::CalculateStackRegion(
|
||
mach_vm_address_t stack_pointer,
|
||
mach_vm_size_t* stack_region_size) {
|
||
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
|
||
|
||
// For pthreads, it may be possible to compute the stack region based on the
|
||
// internal _pthread::stackaddr and _pthread::stacksize. The _pthread struct
|
||
// for a thread can be located at TSD slot 0, or the known offsets of
|
||
// stackaddr and stacksize from the TSD area could be used.
|
||
mach_vm_address_t region_base = stack_pointer;
|
||
mach_vm_size_t region_size;
|
||
natural_t depth = 0;
|
||
vm_prot_t protection;
|
||
unsigned int user_tag;
|
||
kern_return_t kr = MachVMRegionRecurseDeepest(
|
||
task_, ®ion_base, ®ion_size, &depth, &protection, &user_tag);
|
||
if (kr != KERN_SUCCESS) {
|
||
MACH_LOG(INFO, kr) << "mach_vm_region_recurse";
|
||
*stack_region_size = 0;
|
||
return 0;
|
||
}
|
||
|
||
if (region_base > stack_pointer) {
|
||
// There’s nothing mapped at the stack pointer’s address. Something may have
|
||
// trashed the stack pointer. Note that this shouldn’t happen for a normal
|
||
// stack guard region violation because the guard region is mapped but has
|
||
// VM_PROT_NONE protection.
|
||
*stack_region_size = 0;
|
||
return 0;
|
||
}
|
||
|
||
mach_vm_address_t start_address = stack_pointer;
|
||
|
||
if ((protection & VM_PROT_READ) == 0) {
|
||
// If the region isn’t readable, the stack pointer probably points to the
|
||
// guard region. Don’t include it as part of the stack, and don’t include
|
||
// anything at any lower memory address. The code below may still possibly
|
||
// find the real stack region at a memory address higher than this region.
|
||
start_address = region_base + region_size;
|
||
} else {
|
||
// If the ABI requires a red zone, adjust the region to include it if
|
||
// possible.
|
||
LocateRedZone(&start_address, ®ion_base, ®ion_size, user_tag);
|
||
|
||
// Regardless of whether the ABI requires a red zone, capture up to
|
||
// kExtraCaptureSize additional bytes of stack, but only if present in the
|
||
// region that was already found.
|
||
const mach_vm_size_t kExtraCaptureSize = 128;
|
||
start_address = std::max(start_address >= kExtraCaptureSize
|
||
? start_address - kExtraCaptureSize
|
||
: start_address,
|
||
region_base);
|
||
|
||
// Align start_address to a 16-byte boundary, which can help readers by
|
||
// ensuring that data is aligned properly. This could page-align instead,
|
||
// but that might be wasteful.
|
||
const mach_vm_size_t kDesiredAlignment = 16;
|
||
start_address &= ~(kDesiredAlignment - 1);
|
||
DCHECK_GE(start_address, region_base);
|
||
}
|
||
|
||
region_size -= (start_address - region_base);
|
||
region_base = start_address;
|
||
|
||
mach_vm_size_t total_region_size = region_size;
|
||
|
||
// The stack region may have gotten split up into multiple abutting regions.
|
||
// Try to coalesce them. This frequently happens for the main thread’s stack
|
||
// when setrlimit(RLIMIT_STACK, …) is called. It may also happen if a region
|
||
// is split up due to an mprotect() or vm_protect() call.
|
||
//
|
||
// Stack regions created by the kernel and the pthreads library will be marked
|
||
// with the VM_MEMORY_STACK user tag. Scanning for multiple adjacent regions
|
||
// with the same tag should find an entire stack region. Checking that the
|
||
// protection on individual regions is not VM_PROT_NONE should guarantee that
|
||
// this algorithm doesn’t collect map entries belonging to another thread’s
|
||
// stack: well-behaved stacks (such as those created by the kernel and the
|
||
// pthreads library) have VM_PROT_NONE guard regions at their low-address
|
||
// ends.
|
||
//
|
||
// Other stack regions may not be so well-behaved and thus if user_tag is not
|
||
// VM_MEMORY_STACK, the single region that was found is used as-is without
|
||
// trying to merge it with other adjacent regions.
|
||
if (user_tag == VM_MEMORY_STACK) {
|
||
mach_vm_address_t try_address = region_base;
|
||
mach_vm_address_t original_try_address;
|
||
|
||
while (try_address += region_size,
|
||
original_try_address = try_address,
|
||
(kr = MachVMRegionRecurseDeepest(task_,
|
||
&try_address,
|
||
®ion_size,
|
||
&depth,
|
||
&protection,
|
||
&user_tag) == KERN_SUCCESS) &&
|
||
try_address == original_try_address &&
|
||
(protection & VM_PROT_READ) != 0 &&
|
||
user_tag == VM_MEMORY_STACK) {
|
||
total_region_size += region_size;
|
||
}
|
||
|
||
if (kr != KERN_SUCCESS && kr != KERN_INVALID_ADDRESS) {
|
||
// Tolerate KERN_INVALID_ADDRESS because it will be returned when there
|
||
// are no more regions in the map at or above the specified |try_address|.
|
||
MACH_LOG(INFO, kr) << "mach_vm_region_recurse";
|
||
}
|
||
}
|
||
|
||
*stack_region_size = total_region_size;
|
||
return region_base;
|
||
}
|
||
|
||
void ProcessReader::LocateRedZone(mach_vm_address_t* const start_address,
|
||
mach_vm_address_t* const region_base,
|
||
mach_vm_address_t* const region_size,
|
||
const unsigned int user_tag) {
|
||
#if defined(ARCH_CPU_X86_FAMILY)
|
||
if (Is64Bit()) {
|
||
// x86_64 has a red zone. See AMD64 ABI 0.99.6,
|
||
// http://www.x86-64.org/documentation/abi.pdf, section 3.2.2, “The Stack
|
||
// Frame”.
|
||
const mach_vm_size_t kRedZoneSize = 128;
|
||
mach_vm_address_t red_zone_base =
|
||
*start_address >= kRedZoneSize ? *start_address - kRedZoneSize : 0;
|
||
bool red_zone_ok = false;
|
||
if (red_zone_base >= *region_base) {
|
||
// The red zone is within the region already discovered.
|
||
red_zone_ok = true;
|
||
} else if (red_zone_base < *region_base && user_tag == VM_MEMORY_STACK) {
|
||
// Probe to see if there’s a region immediately below the one already
|
||
// discovered.
|
||
mach_vm_address_t red_zone_region_base = red_zone_base;
|
||
mach_vm_size_t red_zone_region_size;
|
||
natural_t red_zone_depth = 0;
|
||
vm_prot_t red_zone_protection;
|
||
unsigned int red_zone_user_tag;
|
||
kern_return_t kr = MachVMRegionRecurseDeepest(task_,
|
||
&red_zone_region_base,
|
||
&red_zone_region_size,
|
||
&red_zone_depth,
|
||
&red_zone_protection,
|
||
&red_zone_user_tag);
|
||
if (kr != KERN_SUCCESS) {
|
||
MACH_LOG(INFO, kr) << "mach_vm_region_recurse";
|
||
*start_address = *region_base;
|
||
} else if (red_zone_region_base + red_zone_region_size == *region_base &&
|
||
(red_zone_protection & VM_PROT_READ) != 0 &&
|
||
red_zone_user_tag == user_tag) {
|
||
// The region containing the red zone is immediately below the region
|
||
// already found, it’s readable (not the guard region), and it has the
|
||
// same user tag as the region already found, so merge them.
|
||
red_zone_ok = true;
|
||
*region_base -= red_zone_region_size;
|
||
*region_size += red_zone_region_size;
|
||
}
|
||
}
|
||
|
||
if (red_zone_ok) {
|
||
// Begin capturing from the base of the red zone (but not the entire
|
||
// region that encompasses the red zone).
|
||
*start_address = red_zone_base;
|
||
} else {
|
||
// The red zone would go lower into another region in memory, but no
|
||
// region was found. Memory can only be captured to an address as low as
|
||
// the base address of the region already found.
|
||
*start_address = *region_base;
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
|
||
} // namespace crashpad
|