// Copyright 2014 The Crashpad Authors. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "snapshot/cpu_context.h" #include #include #include #include "gtest/gtest.h" #include "test/hex_string.h" #include "util/misc/arraysize.h" namespace crashpad { namespace test { namespace { enum ExponentValue { kExponentAllZero = 0, kExponentAllOne, kExponentNormal, }; enum FractionValue { kFractionAllZero = 0, kFractionNormal, }; //! \brief Initializes an x87 register to a known bit pattern. //! //! \param[out] st_mm The x87 register to initialize. The reserved portion of //! the register is always zeroed out. //! \param[in] exponent_value The bit pattern to use for the exponent. If this //! is kExponentAllZero, the sign bit will be set to `1`, and if this is //! kExponentAllOne, the sign bit will be set to `0`. This tests that the //! implementation doesn’t erroneously consider the sign bit to be part of //! the exponent. This may also be kExponentNormal, indicating that the //! exponent shall neither be all zeroes nor all ones. //! \param[in] j_bit The value to use for the “J bit” (“integer bit”). //! \param[in] fraction_value If kFractionAllZero, the fraction will be zeroed //! out. If kFractionNormal, the fraction will not be all zeroes. void SetX87Register(CPUContextX86::X87Register* st, ExponentValue exponent_value, bool j_bit, FractionValue fraction_value) { switch (exponent_value) { case kExponentAllZero: (*st)[9] = 0x80; (*st)[8] = 0; break; case kExponentAllOne: (*st)[9] = 0x7f; (*st)[8] = 0xff; break; case kExponentNormal: (*st)[9] = 0x55; (*st)[8] = 0x55; break; } uint8_t fraction_pattern = fraction_value == kFractionAllZero ? 0 : 0x55; memset(st, fraction_pattern, 8); if (j_bit) { (*st)[7] |= 0x80; } else { (*st)[7] &= ~0x80; } } //! \brief Initializes an x87 register to a known bit pattern. //! //! This behaves as SetX87Register() but also clears the reserved portion of the //! field as used in the `fxsave` format. void SetX87OrMMXRegister(CPUContextX86::X87OrMMXRegister* st_mm, ExponentValue exponent_value, bool j_bit, FractionValue fraction_value) { SetX87Register(&st_mm->st, exponent_value, j_bit, fraction_value); memset(st_mm->st_reserved, 0, sizeof(st_mm->st_reserved)); } TEST(CPUContextX86, FxsaveToFsave) { // Establish a somewhat plausible fxsave state. Use nonzero values for // reserved fields and things that aren’t present in fsave. CPUContextX86::Fxsave fxsave; fxsave.fcw = 0x027f; // mask exceptions, 53-bit precision, round to nearest fxsave.fsw = 1 << 11; // top = 1: logical 0-7 maps to physical 1-7, 0 fxsave.ftw = 0x1f; // physical 5-7 (logical 4-6) empty fxsave.reserved_1 = 0x5a; fxsave.fop = 0x1fe; // fsin fxsave.fpu_ip = 0x76543210; fxsave.fpu_cs = 0x0007; fxsave.reserved_2 = 0x5a5a; fxsave.fpu_dp = 0xfedcba98; fxsave.fpu_ds = 0x000f; fxsave.reserved_3 = 0x5a5a; fxsave.mxcsr = 0x1f80; fxsave.mxcsr_mask = 0xffff; SetX87Register( &fxsave.st_mm[0].st, kExponentNormal, true, kFractionAllZero); // valid SetX87Register( &fxsave.st_mm[1].st, kExponentAllZero, false, kFractionAllZero); // zero SetX87Register( &fxsave.st_mm[2].st, kExponentAllOne, true, kFractionAllZero); // spec. SetX87Register( &fxsave.st_mm[3].st, kExponentAllOne, true, kFractionNormal); // spec. SetX87Register( &fxsave.st_mm[4].st, kExponentAllZero, false, kFractionAllZero); SetX87Register( &fxsave.st_mm[5].st, kExponentAllZero, false, kFractionAllZero); SetX87Register( &fxsave.st_mm[6].st, kExponentAllZero, false, kFractionAllZero); SetX87Register( &fxsave.st_mm[7].st, kExponentNormal, true, kFractionNormal); // valid for (size_t index = 0; index < ArraySize(fxsave.st_mm); ++index) { memset(&fxsave.st_mm[index].st_reserved, 0x5a, sizeof(fxsave.st_mm[index].st_reserved)); } memset(&fxsave.xmm, 0x5a, sizeof(fxsave) - offsetof(decltype(fxsave), xmm)); CPUContextX86::Fsave fsave; CPUContextX86::FxsaveToFsave(fxsave, &fsave); // Everything should have come over from fxsave. Reserved fields should be // zero. EXPECT_EQ(fsave.fcw, fxsave.fcw); EXPECT_EQ(fsave.reserved_1, 0); EXPECT_EQ(fsave.fsw, fxsave.fsw); EXPECT_EQ(fsave.reserved_2, 0); EXPECT_EQ(fsave.ftw, 0xfe90); // FxsaveToFsaveTagWord EXPECT_EQ(fsave.reserved_3, 0); EXPECT_EQ(fsave.fpu_ip, fxsave.fpu_ip); EXPECT_EQ(fsave.fpu_cs, fxsave.fpu_cs); EXPECT_EQ(fsave.fop, fxsave.fop); EXPECT_EQ(fsave.fpu_dp, fxsave.fpu_dp); EXPECT_EQ(fsave.fpu_ds, fxsave.fpu_ds); EXPECT_EQ(fsave.reserved_4, 0); for (size_t index = 0; index < ArraySize(fsave.st); ++index) { EXPECT_EQ(BytesToHexString(fsave.st[index], ArraySize(fsave.st[index])), BytesToHexString(fxsave.st_mm[index].st, ArraySize(fxsave.st_mm[index].st))) << "index " << index; } } TEST(CPUContextX86, FsaveToFxsave) { // Establish a somewhat plausible fsave state. Use nonzero values for // reserved fields. CPUContextX86::Fsave fsave; fsave.fcw = 0x0300; // unmask exceptions, 64-bit precision, round to nearest fsave.reserved_1 = 0xa5a5; fsave.fsw = 2 << 11; // top = 2: logical 0-7 maps to physical 2-7, 0-1 fsave.reserved_2 = 0xa5a5; fsave.ftw = 0xa9ff; // physical 0-3 (logical 6-7, 0-1) empty; physical 4 // (logical 2) zero; physical 5-7 (logical 3-5) special fsave.reserved_3 = 0xa5a5; fsave.fpu_ip = 0x456789ab; fsave.fpu_cs = 0x1013; fsave.fop = 0x01ee; // fldz fsave.fpu_dp = 0x0123cdef; fsave.fpu_ds = 0x2017; fsave.reserved_4 = 0xa5a5; SetX87Register(&fsave.st[0], kExponentAllZero, false, kFractionNormal); SetX87Register(&fsave.st[1], kExponentAllZero, true, kFractionNormal); SetX87Register( &fsave.st[2], kExponentAllZero, false, kFractionAllZero); // zero SetX87Register( &fsave.st[3], kExponentAllZero, true, kFractionAllZero); // spec. SetX87Register( &fsave.st[4], kExponentAllZero, false, kFractionNormal); // spec. SetX87Register( &fsave.st[5], kExponentAllZero, true, kFractionNormal); // spec. SetX87Register(&fsave.st[6], kExponentAllZero, false, kFractionAllZero); SetX87Register(&fsave.st[7], kExponentAllZero, true, kFractionAllZero); CPUContextX86::Fxsave fxsave; CPUContextX86::FsaveToFxsave(fsave, &fxsave); // Everything in fsave should have come over from there. Fields not present in // fsave and reserved fields should be zero. EXPECT_EQ(fxsave.fcw, fsave.fcw); EXPECT_EQ(fxsave.fsw, fsave.fsw); EXPECT_EQ(fxsave.ftw, 0xf0); // FsaveToFxsaveTagWord EXPECT_EQ(fxsave.reserved_1, 0); EXPECT_EQ(fxsave.fop, fsave.fop); EXPECT_EQ(fxsave.fpu_ip, fsave.fpu_ip); EXPECT_EQ(fxsave.fpu_cs, fsave.fpu_cs); EXPECT_EQ(fxsave.reserved_2, 0); EXPECT_EQ(fxsave.fpu_dp, fsave.fpu_dp); EXPECT_EQ(fxsave.fpu_ds, fsave.fpu_ds); EXPECT_EQ(fxsave.reserved_3, 0); EXPECT_EQ(fxsave.mxcsr, 0u); EXPECT_EQ(fxsave.mxcsr_mask, 0u); for (size_t index = 0; index < ArraySize(fxsave.st_mm); ++index) { EXPECT_EQ(BytesToHexString(fxsave.st_mm[index].st, ArraySize(fxsave.st_mm[index].st)), BytesToHexString(fsave.st[index], ArraySize(fsave.st[index]))) << "index " << index; EXPECT_EQ(BytesToHexString(fxsave.st_mm[index].st_reserved, ArraySize(fxsave.st_mm[index].st_reserved)), std::string(ArraySize(fxsave.st_mm[index].st_reserved) * 2, '0')) << "index " << index; } size_t unused_len = sizeof(fxsave) - offsetof(decltype(fxsave), xmm); EXPECT_EQ(BytesToHexString(fxsave.xmm, unused_len), std::string(unused_len * 2, '0')); // Since the fsave format is a subset of the fxsave format, fsave-fxsave-fsave // should round-trip cleanly. CPUContextX86::Fsave fsave_2; CPUContextX86::FxsaveToFsave(fxsave, &fsave_2); // Clear the reserved fields in the original fsave structure, since they’re // expected to be clear in the copy. fsave.reserved_1 = 0; fsave.reserved_2 = 0; fsave.reserved_3 = 0; fsave.reserved_4 = 0; EXPECT_EQ(memcmp(&fsave, &fsave_2, sizeof(fsave)), 0); } TEST(CPUContextX86, FxsaveToFsaveTagWord) { // The fsave tag word uses bit pattern 00 for valid, 01 for zero, 10 for // “special”, and 11 for empty. Like the fxsave tag word, it is arranged by // physical register. The fxsave tag word determines whether a register is // empty, and analysis of the x87 register content distinguishes between // valid, zero, and special. In the initializations below, comments show // whether a register is expected to be considered valid, zero, or special, // except where the tag word is expected to indicate that it is empty. Each // combination appears twice: once where the fxsave tag word indicates a // nonempty register, and once again where it indicates an empty register. uint16_t fsw = 0 << 11; // top = 0: logical 0-7 maps to physical 0-7 uint8_t fxsave_tag = 0x0f; // physical 4-7 (logical 4-7) empty CPUContextX86::X87OrMMXRegister st_mm[8]; SetX87OrMMXRegister( &st_mm[0], kExponentNormal, false, kFractionNormal); // spec. SetX87OrMMXRegister( &st_mm[1], kExponentNormal, true, kFractionNormal); // valid SetX87OrMMXRegister( &st_mm[2], kExponentNormal, false, kFractionAllZero); // spec. SetX87OrMMXRegister( &st_mm[3], kExponentNormal, true, kFractionAllZero); // valid SetX87OrMMXRegister(&st_mm[4], kExponentNormal, false, kFractionNormal); SetX87OrMMXRegister(&st_mm[5], kExponentNormal, true, kFractionNormal); SetX87OrMMXRegister(&st_mm[6], kExponentNormal, false, kFractionAllZero); SetX87OrMMXRegister(&st_mm[7], kExponentNormal, true, kFractionAllZero); EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm), 0xff22); fsw = 2 << 11; // top = 2: logical 0-7 maps to physical 2-7, 0-1 fxsave_tag = 0xf0; // physical 0-3 (logical 6-7, 0-1) empty SetX87OrMMXRegister(&st_mm[0], kExponentAllZero, false, kFractionNormal); SetX87OrMMXRegister(&st_mm[1], kExponentAllZero, true, kFractionNormal); SetX87OrMMXRegister( &st_mm[2], kExponentAllZero, false, kFractionAllZero); // zero SetX87OrMMXRegister( &st_mm[3], kExponentAllZero, true, kFractionAllZero); // spec. SetX87OrMMXRegister( &st_mm[4], kExponentAllZero, false, kFractionNormal); // spec. SetX87OrMMXRegister( &st_mm[5], kExponentAllZero, true, kFractionNormal); // spec. SetX87OrMMXRegister(&st_mm[6], kExponentAllZero, false, kFractionAllZero); SetX87OrMMXRegister(&st_mm[7], kExponentAllZero, true, kFractionAllZero); EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm), 0xa9ff); fsw = 5 << 11; // top = 5: logical 0-7 maps to physical 5-7, 0-4 fxsave_tag = 0x5a; // physical 0, 2, 5, and 7 (logical 5, 0, 2, and 3) empty SetX87OrMMXRegister(&st_mm[0], kExponentAllOne, false, kFractionNormal); SetX87OrMMXRegister( &st_mm[1], kExponentAllOne, true, kFractionNormal); // spec. SetX87OrMMXRegister(&st_mm[2], kExponentAllOne, false, kFractionAllZero); SetX87OrMMXRegister(&st_mm[3], kExponentAllOne, true, kFractionAllZero); SetX87OrMMXRegister( &st_mm[4], kExponentAllOne, false, kFractionNormal); // spec. SetX87OrMMXRegister(&st_mm[5], kExponentAllOne, true, kFractionNormal); SetX87OrMMXRegister( &st_mm[6], kExponentAllOne, false, kFractionAllZero); // spec. SetX87OrMMXRegister( &st_mm[7], kExponentAllOne, true, kFractionAllZero); // spec. EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm), 0xeebb); // This set set is just a mix of all of the possible tag types in a single // register file. fsw = 1 << 11; // top = 1: logical 0-7 maps to physical 1-7, 0 fxsave_tag = 0x1f; // physical 5-7 (logical 4-6) empty SetX87OrMMXRegister( &st_mm[0], kExponentNormal, true, kFractionAllZero); // valid SetX87OrMMXRegister( &st_mm[1], kExponentAllZero, false, kFractionAllZero); // zero SetX87OrMMXRegister( &st_mm[2], kExponentAllOne, true, kFractionAllZero); // spec. SetX87OrMMXRegister( &st_mm[3], kExponentAllOne, true, kFractionNormal); // spec. SetX87OrMMXRegister(&st_mm[4], kExponentAllZero, false, kFractionAllZero); SetX87OrMMXRegister(&st_mm[5], kExponentAllZero, false, kFractionAllZero); SetX87OrMMXRegister(&st_mm[6], kExponentAllZero, false, kFractionAllZero); SetX87OrMMXRegister( &st_mm[7], kExponentNormal, true, kFractionNormal); // valid EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm), 0xfe90); // In this set, everything is valid. fsw = 0 << 11; // top = 0: logical 0-7 maps to physical 0-7 fxsave_tag = 0xff; // nothing empty for (size_t index = 0; index < ArraySize(st_mm); ++index) { SetX87OrMMXRegister(&st_mm[index], kExponentNormal, true, kFractionAllZero); } EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm), 0); // In this set, everything is empty. The registers shouldn’t be consulted at // all, so they’re left alone from the previous set. fsw = 0 << 11; // top = 0: logical 0-7 maps to physical 0-7 fxsave_tag = 0; // everything empty EXPECT_EQ(CPUContextX86::FxsaveToFsaveTagWord(fsw, fxsave_tag, st_mm), 0xffff); } TEST(CPUContextX86, FsaveToFxsaveTagWord) { // The register sets that these x87 tag words might apply to are given in the // FxsaveToFsaveTagWord test above. EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0xff22), 0x0f); EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0xa9ff), 0xf0); EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0xeebb), 0x5a); EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0xfe90), 0x1f); EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0x0000), 0xff); EXPECT_EQ(CPUContextX86::FsaveToFxsaveTagWord(0xffff), 0x00); } } // namespace } // namespace test } // namespace crashpad