// Copyright 2014 The Crashpad Authors. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "snapshot/mac/mach_o_image_reader.h" #include #include #include #include #include #include #include #include #include #include "base/strings/stringprintf.h" #include "build/build_config.h" #include "client/crashpad_info.h" #include "gtest/gtest.h" #include "snapshot/mac/mach_o_image_segment_reader.h" #include "snapshot/mac/process_reader.h" #include "snapshot/mac/process_types.h" #include "test/mac/dyld.h" #include "util/misc/implicit_cast.h" #include "util/misc/uuid.h" // This file is responsible for testing MachOImageReader, // MachOImageSegmentReader, and MachOImageSymbolTableReader. namespace crashpad { namespace test { namespace { // Native types and constants, in cases where the 32-bit and 64-bit versions // are different. #if defined(ARCH_CPU_64_BITS) using MachHeader = mach_header_64; const uint32_t kMachMagic = MH_MAGIC_64; using SegmentCommand = segment_command_64; const uint32_t kSegmentCommand = LC_SEGMENT_64; using Section = section_64; using Nlist = nlist_64; #else using MachHeader = mach_header; const uint32_t kMachMagic = MH_MAGIC; using SegmentCommand = segment_command; const uint32_t kSegmentCommand = LC_SEGMENT; using Section = section; // This needs to be called “struct nlist” because “nlist” without the struct // refers to the nlist() function. using Nlist = struct nlist; #endif #if defined(ARCH_CPU_X86_64) const int kCPUType = CPU_TYPE_X86_64; #elif defined(ARCH_CPU_X86) const int kCPUType = CPU_TYPE_X86; #endif // Verifies that |expect_section| and |actual_section| agree. void ExpectSection(const Section* expect_section, const process_types::section* actual_section) { ASSERT_TRUE(expect_section); ASSERT_TRUE(actual_section); EXPECT_EQ( MachOImageSegmentReader::SectionNameString(expect_section->sectname), MachOImageSegmentReader::SectionNameString(actual_section->sectname)); EXPECT_EQ( MachOImageSegmentReader::SegmentNameString(expect_section->segname), MachOImageSegmentReader::SegmentNameString(actual_section->segname)); EXPECT_EQ(expect_section->addr, actual_section->addr); EXPECT_EQ(expect_section->size, actual_section->size); EXPECT_EQ(expect_section->offset, actual_section->offset); EXPECT_EQ(expect_section->align, actual_section->align); EXPECT_EQ(expect_section->reloff, actual_section->reloff); EXPECT_EQ(expect_section->nreloc, actual_section->nreloc); EXPECT_EQ(expect_section->flags, actual_section->flags); EXPECT_EQ(expect_section->reserved1, actual_section->reserved1); EXPECT_EQ(expect_section->reserved2, actual_section->reserved2); } // Verifies that |expect_segment| is a valid Mach-O segment load command for the // current system by checking its |cmd| field. Then, verifies that the // information in |actual_segment| matches that in |expect_segment|. The // |segname|, |vmaddr|, |vmsize|, and |fileoff| fields are examined. Each // section within the segment is also examined by calling ExpectSection(). // Access to each section via both MachOImageSegmentReader::GetSectionByName() // and MachOImageReader::GetSectionByName() is verified, expecting that each // call produces the same section. Segment and section data addresses are // verified against data obtained by calling getsegmentdata() and // getsectiondata(). The segment is checked to make sure that it behaves // correctly when attempting to look up a nonexistent section by name. // |section_index| is used to track the last-used section index in an image on // entry, and is reset to the last-used section index on return after the // sections are processed. This is used to test that // MachOImageReader::GetSectionAtIndex() returns the correct result. void ExpectSegmentCommand(const SegmentCommand* expect_segment, const MachHeader* expect_image, const MachOImageSegmentReader* actual_segment, const MachOImageReader* actual_image, size_t* section_index) { ASSERT_TRUE(expect_segment); ASSERT_TRUE(actual_segment); EXPECT_EQ(kSegmentCommand, expect_segment->cmd); std::string segment_name = actual_segment->Name(); EXPECT_EQ(MachOImageSegmentReader::SegmentNameString(expect_segment->segname), segment_name); EXPECT_EQ(expect_segment->vmaddr, actual_segment->vmaddr()); EXPECT_EQ(expect_segment->vmsize, actual_segment->vmsize()); EXPECT_EQ(expect_segment->fileoff, actual_segment->fileoff()); if (actual_segment->SegmentSlides()) { EXPECT_EQ(actual_segment->Address(), actual_segment->vmaddr() + actual_image->Slide()); unsigned long expect_segment_size; const uint8_t* expect_segment_data = getsegmentdata( expect_image, segment_name.c_str(), &expect_segment_size); mach_vm_address_t expect_segment_address = reinterpret_cast(expect_segment_data); EXPECT_EQ(expect_segment_address, actual_segment->Address()); EXPECT_EQ(expect_segment_size, actual_segment->vmsize()); EXPECT_EQ(actual_segment->vmsize(), actual_segment->Size()); } else { // getsegmentdata() doesn’t return appropriate data for the __PAGEZERO // segment because getsegmentdata() always adjusts for slide, but the // __PAGEZERO segment never slides, it just grows. Skip the getsegmentdata() // check for that segment according to the same rules that the kernel uses // to identify __PAGEZERO. See 10.9.4 xnu-2422.110.17/bsd/kern/mach_loader.c // load_segment(). EXPECT_EQ(actual_segment->Address(), actual_segment->vmaddr()); EXPECT_EQ(actual_segment->vmsize() + actual_image->Slide(), actual_segment->Size()); } ASSERT_EQ(expect_segment->nsects, actual_segment->nsects()); // Make sure that the expected load command is big enough for the number of // sections that it claims to have, and set up a pointer to its first section // structure. ASSERT_EQ(sizeof(*expect_segment) + expect_segment->nsects * sizeof(Section), expect_segment->cmdsize); const Section* expect_sections = reinterpret_cast(&expect_segment[1]); for (size_t index = 0; index < actual_segment->nsects(); ++index) { const Section* expect_section = &expect_sections[index]; const process_types::section* actual_section = actual_segment->GetSectionAtIndex(index, nullptr); ASSERT_NO_FATAL_FAILURE( ExpectSection(&expect_sections[index], actual_section)); // Make sure that the section is accessible by GetSectionByName as well. std::string section_name = MachOImageSegmentReader::SectionNameString(expect_section->sectname); const process_types::section* actual_section_by_name = actual_segment->GetSectionByName(section_name, nullptr); EXPECT_EQ(actual_section, actual_section_by_name); // Make sure that the section is accessible by the parent MachOImageReader’s // GetSectionByName. mach_vm_address_t actual_section_address; const process_types::section* actual_section_from_image_by_name = actual_image->GetSectionByName( segment_name, section_name, &actual_section_address); EXPECT_EQ(actual_section, actual_section_from_image_by_name); if (actual_segment->SegmentSlides()) { EXPECT_EQ(actual_section_address, actual_section->addr + actual_image->Slide()); unsigned long expect_section_size; const uint8_t* expect_section_data = getsectiondata(expect_image, segment_name.c_str(), section_name.c_str(), &expect_section_size); mach_vm_address_t expect_section_address = reinterpret_cast(expect_section_data); EXPECT_EQ(expect_section_address, actual_section_address); EXPECT_EQ(expect_section_size, actual_section->size); } else { EXPECT_EQ(actual_section_address, actual_section->addr); } // Test the parent MachOImageReader’s GetSectionAtIndex as well. const MachOImageSegmentReader* containing_segment; mach_vm_address_t actual_section_address_at_index; const process_types::section* actual_section_from_image_at_index = actual_image->GetSectionAtIndex(++(*section_index), &containing_segment, &actual_section_address_at_index); EXPECT_EQ(actual_section, actual_section_from_image_at_index); EXPECT_EQ(actual_segment, containing_segment); EXPECT_EQ(actual_section_address, actual_section_address_at_index); } EXPECT_EQ(nullptr, actual_segment->GetSectionByName("NoSuchSection", nullptr)); } // Walks through the load commands of |expect_image|, finding all of the // expected segment commands. For each expected segment command, calls // actual_image->GetSegmentByName() to obtain an actual segment command, and // calls ExpectSegmentCommand() to compare the expected and actual segments. A // series of by-name lookups is also performed on the segment to ensure that it // behaves correctly when attempting to look up segment and section names that // are not present. |test_section_indices| should be true to test // MachOImageReader::GetSectionAtIndex() using out-of-range section indices. // This should be tested for at least one module, but it’s very noisy in terms // of logging output, so this knob is provided to suppress this portion of the // test when looping over all modules. void ExpectSegmentCommands(const MachHeader* expect_image, const MachOImageReader* actual_image, bool test_section_index_bounds) { ASSERT_TRUE(expect_image); ASSERT_TRUE(actual_image); // &expect_image[1] points right past the end of the mach_header[_64], to the // start of the load commands. const char* commands_base = reinterpret_cast(&expect_image[1]); uint32_t position = 0; size_t section_index = 0; for (uint32_t index = 0; index < expect_image->ncmds; ++index) { ASSERT_LT(position, expect_image->sizeofcmds); const load_command* command = reinterpret_cast(&commands_base[position]); ASSERT_LE(position + command->cmdsize, expect_image->sizeofcmds); if (command->cmd == kSegmentCommand) { ASSERT_GE(command->cmdsize, sizeof(SegmentCommand)); const SegmentCommand* expect_segment = reinterpret_cast(command); std::string segment_name = MachOImageSegmentReader::SegmentNameString(expect_segment->segname); const MachOImageSegmentReader* actual_segment = actual_image->GetSegmentByName(segment_name); ASSERT_NO_FATAL_FAILURE(ExpectSegmentCommand(expect_segment, expect_image, actual_segment, actual_image, §ion_index)); } position += command->cmdsize; } EXPECT_EQ(expect_image->sizeofcmds, position); if (test_section_index_bounds) { // GetSectionAtIndex uses a 1-based index. Make sure that the range is // correct. EXPECT_EQ(nullptr, actual_image->GetSectionAtIndex(0, nullptr, nullptr)); EXPECT_EQ( nullptr, actual_image->GetSectionAtIndex(section_index + 1, nullptr, nullptr)); } // Make sure that by-name lookups for names that don’t exist work properly: // they should return nullptr. EXPECT_FALSE(actual_image->GetSegmentByName("NoSuchSegment")); EXPECT_FALSE(actual_image->GetSectionByName( "NoSuchSegment", "NoSuchSection", nullptr)); // Make sure that there’s a __TEXT segment so that this can do a valid test of // a section that doesn’t exist within a segment that does. EXPECT_TRUE(actual_image->GetSegmentByName(SEG_TEXT)); EXPECT_FALSE( actual_image->GetSectionByName(SEG_TEXT, "NoSuchSection", nullptr)); // Similarly, make sure that a section name that exists in one segment isn’t // accidentally found during a lookup for that section in a different segment. // // If the image has no sections (unexpected), then any section lookup should // fail, and these initial values of test_segment and test_section are fine // for the EXPECT_FALSE checks on GetSectionByName() below. std::string test_segment = SEG_DATA; std::string test_section = SECT_TEXT; const process_types::section* section = actual_image->GetSectionAtIndex(1, nullptr, nullptr); if (section) { // Use the name of the first section in the image as the section that // shouldn’t appear in a different segment. If the first section is in the // __TEXT segment (as it is normally), then a section by the same name // wouldn’t be expected in the __DATA segment. But if the first section is // in any other segment, then it wouldn’t be expected in the __TEXT segment. if (MachOImageSegmentReader::SegmentNameString(section->segname) == SEG_TEXT) { test_segment = SEG_DATA; } else { test_segment = SEG_TEXT; } test_section = MachOImageSegmentReader::SectionNameString(section->sectname); // It should be possible to look up the first section by name. EXPECT_EQ(section, actual_image->GetSectionByName( section->segname, section->sectname, nullptr)); } EXPECT_FALSE( actual_image->GetSectionByName("NoSuchSegment", test_section, nullptr)); EXPECT_FALSE( actual_image->GetSectionByName(test_segment, test_section, nullptr)); // The __LINKEDIT segment normally does exist but doesn’t have any sections. EXPECT_FALSE( actual_image->GetSectionByName(SEG_LINKEDIT, "NoSuchSection", nullptr)); EXPECT_FALSE( actual_image->GetSectionByName(SEG_LINKEDIT, SECT_TEXT, nullptr)); } // In some cases, the expected slide value for an image is unknown, because no // reasonable API to return it is provided. When this happens, use kSlideUnknown // to avoid checking the actual slide value against anything. const mach_vm_size_t kSlideUnknown = std::numeric_limits::max(); // Verifies that |expect_image| is a vaild Mach-O header for the current system // by checking its |magic| and |cputype| fields. Then, verifies that the // information in |actual_image| matches that in |expect_image|. The |filetype| // field is examined, actual_image->Address() is compared to // |expect_image_address|, and actual_image->Slide() is compared to // |expect_image_slide|, unless |expect_image_slide| is kSlideUnknown. Various // other attributes of |actual_image| are sanity-checked depending on the Mach-O // file type. Finally, ExpectSegmentCommands() is called to verify all that all // of the segments match; |test_section_index_bounds| is used as an argument to // that function. void ExpectMachImage(const MachHeader* expect_image, mach_vm_address_t expect_image_address, mach_vm_size_t expect_image_slide, const MachOImageReader* actual_image, bool test_section_index_bounds) { ASSERT_TRUE(expect_image); ASSERT_TRUE(actual_image); EXPECT_EQ(kMachMagic, expect_image->magic); EXPECT_EQ(kCPUType, expect_image->cputype); EXPECT_EQ(expect_image->filetype, actual_image->FileType()); EXPECT_EQ(expect_image_address, actual_image->Address()); if (expect_image_slide != kSlideUnknown) { EXPECT_EQ(expect_image_slide, actual_image->Slide()); } const MachOImageSegmentReader* actual_text_segment = actual_image->GetSegmentByName(SEG_TEXT); ASSERT_TRUE(actual_text_segment); EXPECT_EQ(expect_image_address, actual_text_segment->Address()); EXPECT_EQ(actual_image->Size(), actual_text_segment->Size()); EXPECT_EQ(expect_image_address - actual_text_segment->vmaddr(), actual_image->Slide()); uint32_t file_type = actual_image->FileType(); EXPECT_TRUE(file_type == MH_EXECUTE || file_type == MH_DYLIB || file_type == MH_DYLINKER || file_type == MH_BUNDLE); if (file_type == MH_EXECUTE || file_type == MH_DYLINKER) { EXPECT_EQ("/usr/lib/dyld", actual_image->DylinkerName()); } // For these, just don’t crash or anything. if (file_type == MH_DYLIB) { actual_image->DylibVersion(); } actual_image->SourceVersion(); UUID uuid; actual_image->UUID(&uuid); ASSERT_NO_FATAL_FAILURE(ExpectSegmentCommands( expect_image, actual_image, test_section_index_bounds)); } // Verifies the symbol whose Nlist structure is |entry| and whose name is |name| // matches the value of a symbol by the same name looked up in |actual_image|. // MachOImageReader::LookUpExternalDefinedSymbol() is used for this purpose. // Only external defined symbols are considered, other types of symbols are // excluded because LookUpExternalDefinedSymbol() only deals with external // defined symbols. void ExpectSymbol(const Nlist* entry, const char* name, const MachOImageReader* actual_image) { SCOPED_TRACE(name); uint32_t entry_type = entry->n_type & N_TYPE; if ((entry->n_type & N_STAB) == 0 && (entry->n_type & N_PEXT) == 0 && (entry_type == N_ABS || entry_type == N_SECT) && (entry->n_type & N_EXT) == 1) { mach_vm_address_t actual_address; ASSERT_TRUE( actual_image->LookUpExternalDefinedSymbol(name, &actual_address)); // Since the nlist interface was used to read the symbol, use it to compute // the symbol address too. This isn’t perfect, and it should be possible in // theory to use dlsym() to get the expected address of a symbol. In // practice, dlsym() is difficult to use when only a MachHeader* is // available as in this function, as opposed to a void* opaque handle. It is // possible to get a void* handle by using dladdr() to find the file name // corresponding to the MachHeader*, and using dlopen() again on that name, // assuming it hasn’t changed on disk since being loaded. However, even with // that being done, dlsym() can only deal with symbols whose names begin // with an underscore (and requires that the leading underscore be trimmed). // dlsym() will also return different addresses for symbols that are // resolved via symbol resolver. mach_vm_address_t expect_address = entry->n_value; if (entry_type == N_SECT) { EXPECT_GE(entry->n_sect, 1u); expect_address += actual_image->Slide(); } else { EXPECT_EQ(NO_SECT, entry->n_sect); } EXPECT_EQ(expect_address, actual_address); } // You’d think that it might be a good idea to verify that if the conditions // above weren’t met, that the symbol didn’t show up in actual_image’s symbol // table at all. Unfortunately, it’s possible for the same name to show up as // both an external defined symbol and as something else, so it’s not possible // to verify this reliably. } // Locates the symbol table in |expect_image| and verifies that all of the // external defined symbols found there are also present and have the same // values in |actual_image|. ExpectSymbol() is used to verify the actual symbol. void ExpectSymbolTable(const MachHeader* expect_image, const MachOImageReader* actual_image) { // This intentionally consults only LC_SYMTAB and not LC_DYSYMTAB so that it // can look at the larger set of all symbols. The actual implementation being // tested is free to consult LC_DYSYMTAB, but that’s considered an // optimization. It’s not necessary for the test, and it’s better for the test // to expose bugs in that optimization rather than duplicate them. const char* commands_base = reinterpret_cast(&expect_image[1]); uint32_t position = 0; const symtab_command* symtab = nullptr; const SegmentCommand* linkedit = nullptr; for (uint32_t index = 0; index < expect_image->ncmds; ++index) { ASSERT_LT(position, expect_image->sizeofcmds); const load_command* command = reinterpret_cast(&commands_base[position]); ASSERT_LE(position + command->cmdsize, expect_image->sizeofcmds); if (command->cmd == LC_SYMTAB) { ASSERT_FALSE(symtab); ASSERT_EQ(sizeof(symtab_command), command->cmdsize); symtab = reinterpret_cast(command); } else if (command->cmd == kSegmentCommand) { ASSERT_GE(command->cmdsize, sizeof(SegmentCommand)); const SegmentCommand* segment = reinterpret_cast(command); std::string segment_name = MachOImageSegmentReader::SegmentNameString(segment->segname); if (segment_name == SEG_LINKEDIT) { ASSERT_FALSE(linkedit); linkedit = segment; } } position += command->cmdsize; } if (symtab) { ASSERT_TRUE(linkedit); const char* linkedit_base = reinterpret_cast(linkedit->vmaddr + actual_image->Slide()); const Nlist* nlist = reinterpret_cast( linkedit_base + symtab->symoff - linkedit->fileoff); const char* strtab = linkedit_base + symtab->stroff - linkedit->fileoff; for (uint32_t index = 0; index < symtab->nsyms; ++index) { const Nlist* entry = nlist + index; const char* name = strtab + entry->n_un.n_strx; ASSERT_NO_FATAL_FAILURE(ExpectSymbol(entry, name, actual_image)); } } mach_vm_address_t ignore; EXPECT_FALSE(actual_image->LookUpExternalDefinedSymbol("", &ignore)); EXPECT_FALSE( actual_image->LookUpExternalDefinedSymbol("NoSuchSymbolName", &ignore)); EXPECT_FALSE( actual_image->LookUpExternalDefinedSymbol("_NoSuchSymbolName", &ignore)); } TEST(MachOImageReader, Self_MainExecutable) { ProcessReader process_reader; ASSERT_TRUE(process_reader.Initialize(mach_task_self())); const MachHeader* mh_execute_header = reinterpret_cast(dlsym(RTLD_MAIN_ONLY, MH_EXECUTE_SYM)); ASSERT_NE(nullptr, mh_execute_header); mach_vm_address_t mh_execute_header_address = reinterpret_cast(mh_execute_header); MachOImageReader image_reader; ASSERT_TRUE(image_reader.Initialize( &process_reader, mh_execute_header_address, "executable")); EXPECT_EQ(implicit_cast(MH_EXECUTE), image_reader.FileType()); // The main executable has image index 0. intptr_t image_slide = _dyld_get_image_vmaddr_slide(0); ASSERT_NO_FATAL_FAILURE(ExpectMachImage(mh_execute_header, mh_execute_header_address, image_slide, &image_reader, true)); // This symbol, __mh_execute_header, is known to exist in all MH_EXECUTE // Mach-O files. mach_vm_address_t symbol_address; ASSERT_TRUE(image_reader.LookUpExternalDefinedSymbol(_MH_EXECUTE_SYM, &symbol_address)); EXPECT_EQ(mh_execute_header_address, symbol_address); ASSERT_NO_FATAL_FAILURE(ExpectSymbolTable(mh_execute_header, &image_reader)); } TEST(MachOImageReader, Self_DyldImages) { ProcessReader process_reader; ASSERT_TRUE(process_reader.Initialize(mach_task_self())); uint32_t count = _dyld_image_count(); ASSERT_GE(count, 1u); size_t modules_with_crashpad_info = 0; for (uint32_t index = 0; index < count; ++index) { const char* image_name = _dyld_get_image_name(index); SCOPED_TRACE(base::StringPrintf("index %u, image %s", index, image_name)); // _dyld_get_image_header() is poorly-declared: it’s declared as returning // const mach_header* in both 32-bit and 64-bit environments, but in the // 64-bit environment, it should be const mach_header_64*. const MachHeader* mach_header = reinterpret_cast(_dyld_get_image_header(index)); mach_vm_address_t image_address = reinterpret_cast(mach_header); MachOImageReader image_reader; ASSERT_TRUE( image_reader.Initialize(&process_reader, image_address, image_name)); uint32_t file_type = image_reader.FileType(); if (index == 0) { EXPECT_EQ(implicit_cast(MH_EXECUTE), file_type); } else { EXPECT_TRUE(file_type == MH_DYLIB || file_type == MH_BUNDLE); } intptr_t image_slide = _dyld_get_image_vmaddr_slide(index); ASSERT_NO_FATAL_FAILURE(ExpectMachImage( mach_header, image_address, image_slide, &image_reader, false)); ASSERT_NO_FATAL_FAILURE(ExpectSymbolTable(mach_header, &image_reader)); process_types::CrashpadInfo crashpad_info; if (image_reader.GetCrashpadInfo(&crashpad_info)) { ++modules_with_crashpad_info; } } EXPECT_GE(modules_with_crashpad_info, 1u); // Now that all of the modules have been verified, make sure that dyld itself // can be read properly too. const struct dyld_all_image_infos* dyld_image_infos = _dyld_get_all_image_infos(); ASSERT_GE(dyld_image_infos->version, 1u); EXPECT_EQ(count, dyld_image_infos->infoArrayCount); if (dyld_image_infos->version >= 2) { SCOPED_TRACE("dyld"); // dyld_all_image_infos::dyldImageLoadAddress is poorly-declared too. const MachHeader* mach_header = reinterpret_cast( dyld_image_infos->dyldImageLoadAddress); mach_vm_address_t image_address = reinterpret_cast(mach_header); MachOImageReader image_reader; ASSERT_TRUE( image_reader.Initialize(&process_reader, image_address, "dyld")); EXPECT_EQ(implicit_cast(MH_DYLINKER), image_reader.FileType()); // There’s no good API to get dyld’s slide, so don’t bother checking it. ASSERT_NO_FATAL_FAILURE(ExpectMachImage( mach_header, image_address, kSlideUnknown, &image_reader, false)); ASSERT_NO_FATAL_FAILURE(ExpectSymbolTable(mach_header, &image_reader)); } #if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_7 // If dyld is new enough to record UUIDs, check the UUID of any module that // it says has one. Note that dyld doesn’t record UUIDs of anything that // loaded out of the shared cache, but it should at least have a UUID for the // main executable if it has one. if (dyld_image_infos->version >= 8 && dyld_image_infos->uuidArray) { for (uint32_t index = 0; index < dyld_image_infos->uuidArrayCount; ++index) { const dyld_uuid_info* dyld_image = &dyld_image_infos->uuidArray[index]; SCOPED_TRACE(base::StringPrintf("uuid index %u", index)); // dyld_uuid_info::imageLoadAddress is poorly-declared too. const MachHeader* mach_header = reinterpret_cast(dyld_image->imageLoadAddress); mach_vm_address_t image_address = reinterpret_cast(mach_header); MachOImageReader image_reader; ASSERT_TRUE( image_reader.Initialize(&process_reader, image_address, "uuid")); // There’s no good way to get the image’s slide here, although the image // should have already been checked along with its slide above, in the // loop through all images. ExpectMachImage( mach_header, image_address, kSlideUnknown, &image_reader, false); UUID expected_uuid; expected_uuid.InitializeFromBytes(dyld_image->imageUUID); UUID actual_uuid; image_reader.UUID(&actual_uuid); EXPECT_EQ(expected_uuid, actual_uuid); } } #endif } } // namespace } // namespace test } // namespace crashpad