// Copyright 2020 The Crashpad Authors. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "snapshot/ios/thread_snapshot_ios.h" #include "base/mac/mach_logging.h" #include "snapshot/mac/cpu_context_mac.h" namespace { #if defined(ARCH_CPU_X86_64) const thread_state_flavor_t kThreadStateFlavor = x86_THREAD_STATE64; const thread_state_flavor_t kFloatStateFlavor = x86_FLOAT_STATE64; const thread_state_flavor_t kDebugStateFlavor = x86_DEBUG_STATE64; #elif defined(ARCH_CPU_ARM64) const thread_state_flavor_t kThreadStateFlavor = ARM_THREAD_STATE64; const thread_state_flavor_t kFloatStateFlavor = ARM_NEON_STATE64; const thread_state_flavor_t kDebugStateFlavor = ARM_DEBUG_STATE64; #endif kern_return_t MachVMRegionRecurseDeepest(task_t task, vm_address_t* address, vm_size_t* size, natural_t* depth, vm_prot_t* protection, unsigned int* user_tag) { vm_region_submap_short_info_64 submap_info; mach_msg_type_number_t count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64; while (true) { kern_return_t kr = vm_region_recurse_64( task, address, size, depth, reinterpret_cast(&submap_info), &count); if (kr != KERN_SUCCESS) { return kr; } if (!submap_info.is_submap) { *protection = submap_info.protection; *user_tag = submap_info.user_tag; return KERN_SUCCESS; } ++*depth; } } //! \brief Adjusts the region for the red zone, if the ABI requires one. //! //! This method performs red zone calculation for CalculateStackRegion(). Its //! parameters are local variables used within that method, and may be //! modified as needed. //! //! Where a red zone is required, the region of memory captured for a thread’s //! stack will be extended to include the red zone below the stack pointer, //! provided that such memory is mapped, readable, and has the correct user //! tag value. If these conditions cannot be met fully, as much of the red //! zone will be captured as is possible while meeting these conditions. //! //! \param[in,out] start_address The base address of the region to begin //! capturing stack memory from. On entry, \a start_address is the stack //! pointer. On return, \a start_address may be decreased to encompass a //! red zone. //! \param[in,out] region_base The base address of the region that contains //! stack memory. This is distinct from \a start_address in that \a //! region_base will be page-aligned. On entry, \a region_base is the //! base address of a region that contains \a start_address. On return, //! if \a start_address is decremented and is outside of the region //! originally described by \a region_base, \a region_base will also be //! decremented appropriately. //! \param[in,out] region_size The size of the region that contains stack //! memory. This region begins at \a region_base. On return, if \a //! region_base is decremented, \a region_size will be incremented //! appropriately. //! \param[in] user_tag The Mach VM system’s user tag for the region described //! by the initial values of \a region_base and \a region_size. The red //! zone will only be allowed to extend out of the region described by //! these initial values if the user tag is appropriate for stack memory //! and the expanded region has the same user tag value. void LocateRedZone(vm_address_t* const start_address, vm_address_t* const region_base, vm_address_t* const region_size, const unsigned int user_tag) { // x86_64 has a red zone. See AMD64 ABI 0.99.8, // https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-r252.pdf#page=19, // section 3.2.2, “The Stack Frame”. // So does ARM64, // https://developer.apple.com/library/archive/documentation/Xcode/Conceptual/iPhoneOSABIReference/Articles/ARM64FunctionCallingConventions.html // section "Red Zone". constexpr vm_size_t kRedZoneSize = 128; vm_address_t red_zone_base = *start_address >= kRedZoneSize ? *start_address - kRedZoneSize : 0; bool red_zone_ok = false; if (red_zone_base >= *region_base) { // The red zone is within the region already discovered. red_zone_ok = true; } else if (red_zone_base < *region_base && user_tag == VM_MEMORY_STACK) { // Probe to see if there’s a region immediately below the one already // discovered. vm_address_t red_zone_region_base = red_zone_base; vm_size_t red_zone_region_size; natural_t red_zone_depth = 0; vm_prot_t red_zone_protection; unsigned int red_zone_user_tag; kern_return_t kr = MachVMRegionRecurseDeepest(mach_task_self(), &red_zone_region_base, &red_zone_region_size, &red_zone_depth, &red_zone_protection, &red_zone_user_tag); if (kr != KERN_SUCCESS) { MACH_LOG(INFO, kr) << "vm_region_recurse"; *start_address = *region_base; } else if (red_zone_region_base + red_zone_region_size == *region_base && (red_zone_protection & VM_PROT_READ) != 0 && red_zone_user_tag == user_tag) { // The region containing the red zone is immediately below the region // already found, it’s readable (not the guard region), and it has the // same user tag as the region already found, so merge them. red_zone_ok = true; *region_base -= red_zone_region_size; *region_size += red_zone_region_size; } } if (red_zone_ok) { // Begin capturing from the base of the red zone (but not the entire // region that encompasses the red zone). *start_address = red_zone_base; } else { // The red zone would go lower into another region in memory, but no // region was found. Memory can only be captured to an address as low as // the base address of the region already found. *start_address = *region_base; } } //! \brief Calculates the base address and size of the region used as a //! thread’s stack. //! //! The region returned by this method may be formed by merging multiple //! adjacent regions in a process’ memory map if appropriate. The base address //! of the returned region may be lower than the \a stack_pointer passed in //! when the ABI mandates a red zone below the stack pointer. //! //! \param[in] stack_pointer The stack pointer, referring to the top (lowest //! address) of a thread’s stack. //! \param[out] stack_region_size The size of the memory region used as the //! thread’s stack. //! //! \return The base address (lowest address) of the memory region used as the //! thread’s stack. vm_address_t CalculateStackRegion(vm_address_t stack_pointer, vm_size_t* stack_region_size) { // For pthreads, it may be possible to compute the stack region based on the // internal _pthread::stackaddr and _pthread::stacksize. The _pthread struct // for a thread can be located at TSD slot 0, or the known offsets of // stackaddr and stacksize from the TSD area could be used. vm_address_t region_base = stack_pointer; vm_size_t region_size; natural_t depth = 0; vm_prot_t protection; unsigned int user_tag; kern_return_t kr = MachVMRegionRecurseDeepest(mach_task_self(), ®ion_base, ®ion_size, &depth, &protection, &user_tag); if (kr != KERN_SUCCESS) { MACH_LOG(INFO, kr) << "mach_vm_region_recurse"; *stack_region_size = 0; return 0; } if (region_base > stack_pointer) { // There’s nothing mapped at the stack pointer’s address. Something may have // trashed the stack pointer. Note that this shouldn’t happen for a normal // stack guard region violation because the guard region is mapped but has // VM_PROT_NONE protection. *stack_region_size = 0; return 0; } vm_address_t start_address = stack_pointer; if ((protection & VM_PROT_READ) == 0) { // If the region isn’t readable, the stack pointer probably points to the // guard region. Don’t include it as part of the stack, and don’t include // anything at any lower memory address. The code below may still possibly // find the real stack region at a memory address higher than this region. start_address = region_base + region_size; } else { // If the ABI requires a red zone, adjust the region to include it if // possible. LocateRedZone(&start_address, ®ion_base, ®ion_size, user_tag); // Regardless of whether the ABI requires a red zone, capture up to // kExtraCaptureSize additional bytes of stack, but only if present in the // region that was already found. constexpr vm_size_t kExtraCaptureSize = 128; start_address = std::max(start_address >= kExtraCaptureSize ? start_address - kExtraCaptureSize : start_address, region_base); // Align start_address to a 16-byte boundary, which can help readers by // ensuring that data is aligned properly. This could page-align instead, // but that might be wasteful. constexpr vm_size_t kDesiredAlignment = 16; start_address &= ~(kDesiredAlignment - 1); DCHECK_GE(start_address, region_base); } region_size -= (start_address - region_base); region_base = start_address; vm_size_t total_region_size = region_size; // The stack region may have gotten split up into multiple abutting regions. // Try to coalesce them. This frequently happens for the main thread’s stack // when setrlimit(RLIMIT_STACK, …) is called. It may also happen if a region // is split up due to an mprotect() or vm_protect() call. // // Stack regions created by the kernel and the pthreads library will be marked // with the VM_MEMORY_STACK user tag. Scanning for multiple adjacent regions // with the same tag should find an entire stack region. Checking that the // protection on individual regions is not VM_PROT_NONE should guarantee that // this algorithm doesn’t collect map entries belonging to another thread’s // stack: well-behaved stacks (such as those created by the kernel and the // pthreads library) have VM_PROT_NONE guard regions at their low-address // ends. // // Other stack regions may not be so well-behaved and thus if user_tag is not // VM_MEMORY_STACK, the single region that was found is used as-is without // trying to merge it with other adjacent regions. if (user_tag == VM_MEMORY_STACK) { vm_address_t try_address = region_base; vm_address_t original_try_address; while (try_address += region_size, original_try_address = try_address, (kr = MachVMRegionRecurseDeepest(mach_task_self(), &try_address, ®ion_size, &depth, &protection, &user_tag) == KERN_SUCCESS) && try_address == original_try_address && (protection & VM_PROT_READ) != 0 && user_tag == VM_MEMORY_STACK) { total_region_size += region_size; } if (kr != KERN_SUCCESS && kr != KERN_INVALID_ADDRESS) { // Tolerate KERN_INVALID_ADDRESS because it will be returned when there // are no more regions in the map at or above the specified |try_address|. MACH_LOG(INFO, kr) << "vm_region_recurse"; } } *stack_region_size = total_region_size; return region_base; } } // namespace namespace crashpad { namespace internal { ThreadSnapshotIOS::ThreadSnapshotIOS() : ThreadSnapshot(), context_(), stack_(), thread_id_(0), thread_specific_data_address_(0), suspend_count_(0), priority_(0), initialized_() {} ThreadSnapshotIOS::~ThreadSnapshotIOS() {} // static thread_act_array_t ThreadSnapshotIOS::GetThreads( mach_msg_type_number_t* count) { thread_act_array_t threads; kern_return_t kr = task_threads(mach_task_self(), &threads, count); if (kr != KERN_SUCCESS) { MACH_LOG(WARNING, kr) << "task_threads"; } return threads; } bool ThreadSnapshotIOS::Initialize(thread_t thread) { INITIALIZATION_STATE_SET_INITIALIZING(initialized_); // TODO(justincohen): Move the following thread_get_state, thread_get_info, // thread_policy_get and CalculateStackRegion to the serialize-on-read // section. thread_basic_info basic_info; thread_precedence_policy precedence; vm_size_t stack_region_size; vm_address_t stack_region_address; #if defined(ARCH_CPU_X86_64) x86_thread_state64_t thread_state; x86_float_state64_t float_state; x86_debug_state64_t debug_state; mach_msg_type_number_t thread_state_count = x86_THREAD_STATE64_COUNT; mach_msg_type_number_t float_state_count = x86_FLOAT_STATE64_COUNT; mach_msg_type_number_t debug_state_count = x86_DEBUG_STATE64_COUNT; #elif defined(ARCH_CPU_ARM64) arm_thread_state64_t thread_state; arm_neon_state64_t float_state; arm_debug_state64_t debug_state; mach_msg_type_number_t thread_state_count = ARM_THREAD_STATE64_COUNT; mach_msg_type_number_t float_state_count = ARM_NEON_STATE64_COUNT; mach_msg_type_number_t debug_state_count = ARM_DEBUG_STATE64_COUNT; #endif kern_return_t kr = thread_get_state(thread, kThreadStateFlavor, reinterpret_cast(&thread_state), &thread_state_count); if (kr != KERN_SUCCESS) { MACH_LOG(ERROR, kr) << "thread_get_state(" << kThreadStateFlavor << ")"; } kr = thread_get_state(thread, kFloatStateFlavor, reinterpret_cast(&float_state), &float_state_count); if (kr != KERN_SUCCESS) { MACH_LOG(ERROR, kr) << "thread_get_state(" << kFloatStateFlavor << ")"; } kr = thread_get_state(thread, kDebugStateFlavor, reinterpret_cast(&debug_state), &debug_state_count); if (kr != KERN_SUCCESS) { MACH_LOG(ERROR, kr) << "thread_get_state(" << kDebugStateFlavor << ")"; } mach_msg_type_number_t count = THREAD_BASIC_INFO_COUNT; kr = thread_info(thread, THREAD_BASIC_INFO, reinterpret_cast(&basic_info), &count); if (kr != KERN_SUCCESS) { MACH_LOG(WARNING, kr) << "thread_info(THREAD_BASIC_INFO)"; } thread_identifier_info identifier_info; count = THREAD_IDENTIFIER_INFO_COUNT; kr = thread_info(thread, THREAD_IDENTIFIER_INFO, reinterpret_cast(&identifier_info), &count); if (kr != KERN_SUCCESS) { MACH_LOG(WARNING, kr) << "thread_info(THREAD_IDENTIFIER_INFO)"; } count = THREAD_PRECEDENCE_POLICY_COUNT; boolean_t get_default = FALSE; kr = thread_policy_get(thread, THREAD_PRECEDENCE_POLICY, reinterpret_cast(&precedence), &count, &get_default); if (kr != KERN_SUCCESS) { MACH_LOG(ERROR, kr) << "thread_policy_get"; } #if defined(ARCH_CPU_X86_64) vm_address_t stack_pointer = thread_state.__rsp; #elif defined(ARCH_CPU_ARM64) vm_address_t stack_pointer = arm_thread_state64_get_sp(thread_state); #endif stack_region_address = CalculateStackRegion(stack_pointer, &stack_region_size); // TODO(justincohen): Assume the following will fill in snapshot data from // a deserialized object. thread_id_ = identifier_info.thread_id; suspend_count_ = basic_info.suspend_count; priority_ = precedence.importance; // thread_identifier_info::thread_handle contains the base of the // thread-specific data area, which on x86 and x86_64 is the thread’s base // address of the %gs segment. 10.9.2 xnu-2422.90.20/osfmk/kern/thread.c // thread_info_internal() gets the value from // machine_thread::cthread_self, which is the same value used to set the // %gs base in xnu-2422.90.20/osfmk/i386/pcb_native.c // act_machine_switch_pcb(). // // On ARM64 10.15.0 xnu-6153.11.26/osfmk/kern/thread.c, it sets // thread_identifier_info_t::thread_handle to // thread->machine.cthread_self, which is set to tsd_base in // osfmk/arm64/pcb.c. thread_specific_data_address_ = identifier_info.thread_handle; stack_.Initialize(stack_region_address, stack_region_size); #if defined(ARCH_CPU_X86_64) context_.architecture = kCPUArchitectureX86_64; context_.x86_64 = &context_x86_64_; InitializeCPUContextX86_64(&context_x86_64_, THREAD_STATE_NONE, nullptr, 0, &thread_state, &float_state, &debug_state); #elif defined(ARCH_CPU_ARM64) context_.architecture = kCPUArchitectureARM64; context_.arm64 = &context_arm64_; InitializeCPUContextARM64(&context_arm64_, THREAD_STATE_NONE, nullptr, 0, &thread_state, &float_state, &debug_state); #else #error Port to your CPU architecture #endif INITIALIZATION_STATE_SET_VALID(initialized_); return true; } const CPUContext* ThreadSnapshotIOS::Context() const { INITIALIZATION_STATE_DCHECK_VALID(initialized_); return &context_; } const MemorySnapshot* ThreadSnapshotIOS::Stack() const { INITIALIZATION_STATE_DCHECK_VALID(initialized_); return &stack_; } uint64_t ThreadSnapshotIOS::ThreadID() const { INITIALIZATION_STATE_DCHECK_VALID(initialized_); return thread_id_; } int ThreadSnapshotIOS::SuspendCount() const { INITIALIZATION_STATE_DCHECK_VALID(initialized_); return suspend_count_; } int ThreadSnapshotIOS::Priority() const { INITIALIZATION_STATE_DCHECK_VALID(initialized_); return priority_; } uint64_t ThreadSnapshotIOS::ThreadSpecificDataAddress() const { INITIALIZATION_STATE_DCHECK_VALID(initialized_); return thread_specific_data_address_; } std::vector ThreadSnapshotIOS::ExtraMemory() const { return std::vector(); } } // namespace internal } // namespace crashpad