// Copyright 2014 The Crashpad Authors. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "client/capture_context_mac.h" #include #include #include #include "build/build_config.h" #include "gtest/gtest.h" #include "util/misc/implicit_cast.h" namespace crashpad { namespace test { namespace { // If the context structure has fields that tell whether it’s valid, such as // magic numbers or size fields, sanity-checks those fields for validity with // fatal gtest assertions. For other fields, where it’s possible to reason about // their validity based solely on their contents, sanity-checks via nonfatal // gtest assertions. void SanityCheckContext(const NativeCPUContext& context) { #if defined(ARCH_CPU_X86) ASSERT_EQ(x86_THREAD_STATE32, context.tsh.flavor); ASSERT_EQ(implicit_cast(x86_THREAD_STATE32_COUNT), context.tsh.count); #elif defined(ARCH_CPU_X86_64) ASSERT_EQ(x86_THREAD_STATE64, context.tsh.flavor); ASSERT_EQ(implicit_cast(x86_THREAD_STATE64_COUNT), context.tsh.count); #endif #if defined(ARCH_CPU_X86_FAMILY) // The segment registers are only capable of storing 16-bit quantities, but // the context structure provides native integer-width fields for them. Ensure // that the high bits are all clear. // // Many bit positions in the flags register are reserved and will always read // a known value. Most reserved bits are always 0, but bit 1 is always 1. // Check that the reserved bits are all set to their expected values. Note // that the set of reserved bits may be relaxed over time with newer CPUs, and // that this test may need to be changed to reflect these developments. The // current set of reserved bits are 1, 3, 5, 15, and 22 and higher. See Intel // Software Developer’s Manual, Volume 1: Basic Architecture (253665-051), // 3.4.3 “EFLAGS Register”, and AMD Architecture Programmer’s Manual, Volume // 2: System Programming (24593-3.24), 3.1.6 “RFLAGS Register”. #if defined(ARCH_CPU_X86) EXPECT_EQ(0u, context.uts.ts32.__cs & ~0xffff); EXPECT_EQ(0u, context.uts.ts32.__ds & ~0xffff); EXPECT_EQ(0u, context.uts.ts32.__es & ~0xffff); EXPECT_EQ(0u, context.uts.ts32.__fs & ~0xffff); EXPECT_EQ(0u, context.uts.ts32.__gs & ~0xffff); EXPECT_EQ(0u, context.uts.ts32.__ss & ~0xffff); EXPECT_EQ(2u, context.uts.ts32.__eflags & 0xffc0802a); #elif defined(ARCH_CPU_X86_64) EXPECT_EQ(0u, context.uts.ts64.__cs & ~UINT64_C(0xffff)); EXPECT_EQ(0u, context.uts.ts64.__fs & ~UINT64_C(0xffff)); EXPECT_EQ(0u, context.uts.ts64.__gs & ~UINT64_C(0xffff)); EXPECT_EQ(2u, context.uts.ts64.__rflags & UINT64_C(0xffffffffffc0802a)); #endif #endif } // A CPU-independent function to return the program counter. uintptr_t ProgramCounterFromContext(const NativeCPUContext& context) { #if defined(ARCH_CPU_X86) return context.uts.ts32.__eip; #elif defined(ARCH_CPU_X86_64) return context.uts.ts64.__rip; #endif } // A CPU-independent function to return the stack pointer. uintptr_t StackPointerFromContext(const NativeCPUContext& context) { #if defined(ARCH_CPU_X86) return context.uts.ts32.__esp; #elif defined(ARCH_CPU_X86_64) return context.uts.ts64.__rsp; #endif } void TestCaptureContext() { NativeCPUContext context_1; CaptureContext(&context_1); { SCOPED_TRACE("context_1"); ASSERT_NO_FATAL_FAILURE(SanityCheckContext(context_1)); } // The program counter reference value is this function’s address. The // captured program counter should be slightly greater than or equal to the // reference program counter. uintptr_t pc = ProgramCounterFromContext(context_1); #if !__has_feature(address_sanitizer) // AddressSanitizer can cause enough code bloat that the “nearby” check would // likely fail. const uintptr_t kReferencePC = reinterpret_cast(TestCaptureContext); EXPECT_LT(pc - kReferencePC, 64u); #endif // Declare sp and context_2 here because all local variables need to be // declared before computing the stack pointer reference value, so that the // reference value can be the lowest value possible. uintptr_t sp; NativeCPUContext context_2; // The stack pointer reference value is the lowest address of a local variable // in this function. The captured program counter will be slightly less than // or equal to the reference stack pointer. const uintptr_t kReferenceSP = std::min(std::min(reinterpret_cast(&context_1), reinterpret_cast(&context_2)), std::min(reinterpret_cast(&pc), reinterpret_cast(&sp))); sp = StackPointerFromContext(context_1); EXPECT_LT(kReferenceSP - sp, 512u); // Capture the context again, expecting that the stack pointer stays the same // and the program counter increases. Strictly speaking, there’s no guarantee // that these conditions will hold, although they do for known compilers even // under typical optimization. CaptureContext(&context_2); { SCOPED_TRACE("context_2"); ASSERT_NO_FATAL_FAILURE(SanityCheckContext(context_2)); } EXPECT_EQ(sp, StackPointerFromContext(context_2)); EXPECT_GT(ProgramCounterFromContext(context_2), pc); } TEST(CaptureContextMac, CaptureContext) { ASSERT_NO_FATAL_FAILURE(TestCaptureContext()); } } // namespace } // namespace test } // namespace crashpad