Add MachMessageServer and its test.

MachMessageServer is much like mach_msg_server() and
mach_msg_server_once(), but with a C++ interface and with a number of
deficiencies corrected.

TEST=util_test MachMessageServer.*
R=rsesek@chromium.org

Review URL: https://codereview.chromium.org/544393002
This commit is contained in:
Mark Mentovai 2014-09-08 21:06:34 -04:00
parent 2cae118b60
commit 67082c93b9
4 changed files with 956 additions and 0 deletions

View File

@ -0,0 +1,282 @@
// Copyright 2014 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "util/mach/mach_message_server.h"
#include <mach/mach_time.h>
#include <limits>
#include "base/mac/mach_logging.h"
#include "base/mac/scoped_mach_vm.h"
namespace crashpad {
namespace {
mach_timebase_info_data_t* TimebaseInternal() {
mach_timebase_info_data_t* timebase_info = new mach_timebase_info_data_t;
kern_return_t kr = mach_timebase_info(timebase_info);
MACH_CHECK(kr == KERN_SUCCESS, kr) << "mach_timebase_info";
return timebase_info;
}
mach_timebase_info_data_t* Timebase() {
static mach_timebase_info_data_t* timebase_info = TimebaseInternal();
return timebase_info;
}
uint64_t NanosecondTicks() {
uint64_t absolute_time = mach_absolute_time();
mach_timebase_info_data_t* timebase_info = Timebase();
return absolute_time * timebase_info->numer / timebase_info->denom;
}
const int kNanosecondsPerMillisecond = 1E6;
// TimerRunning determines whether |deadline| has passed. If |deadline| is in
// the future, |*remaining_ms| is set to the number of milliseconds remaining,
// which will always be a positive value, and this function returns true. If
// |deadline| is zero (indicating that no timer is in effect), |*remaining_ms|
// is set to zero and this function returns true. Otherwise, this function
// returns false. |deadline| is specified on the same time base as is returned
// by NanosecondTicks().
bool TimerRunning(uint64_t deadline, mach_msg_timeout_t* remaining_ms) {
if (!deadline) {
*remaining_ms = MACH_MSG_TIMEOUT_NONE;
return true;
}
uint64_t now = NanosecondTicks();
if (now >= deadline) {
return false;
}
uint64_t remaining = deadline - now;
// Round to the nearest millisecond, taking care not to overflow.
const int kHalfMillisecondInNanoseconds = kNanosecondsPerMillisecond / 2;
mach_msg_timeout_t remaining_mach;
if (remaining <=
std::numeric_limits<uint64_t>::max() - kHalfMillisecondInNanoseconds) {
remaining_mach = (remaining + kHalfMillisecondInNanoseconds) /
kNanosecondsPerMillisecond;
} else {
remaining_mach = remaining / kNanosecondsPerMillisecond;
}
if (remaining_mach == MACH_MSG_TIMEOUT_NONE) {
return false;
}
*remaining_ms = remaining_mach;
return true;
}
} // namespace
// This implementation is based on 10.9.4
// xnu-2422.110.17/libsyscall/mach/mach_msg.c mach_msg_server_once(), but
// adapted to local style using scopers, replacing the server callback function
// and |max_size| parameter with a C++ interface, and with the addition of the
// the |persistent| parameter allowing this function to serve as a stand-in for
// mach_msg_server(), the |nonblocking| parameter to control blocking directly,
// and the |timeout_ms| parameter allowing this function to not block
// indefinitely.
//
// static
mach_msg_return_t MachMessageServer::Run(Interface* interface,
mach_port_t receive_port,
mach_msg_options_t options,
Persistent persistent,
Nonblocking nonblocking,
mach_msg_timeout_t timeout_ms) {
options &= ~(MACH_RCV_MSG | MACH_SEND_MSG);
mach_msg_options_t timeout_options = MACH_RCV_TIMEOUT | MACH_SEND_TIMEOUT |
MACH_RCV_INTERRUPT | MACH_SEND_INTERRUPT;
uint64_t deadline;
if (nonblocking == kNonblocking) {
options |= timeout_options;
deadline = 0;
} else if (timeout_ms != MACH_MSG_TIMEOUT_NONE) {
options |= timeout_options;
deadline = NanosecondTicks() +
static_cast<uint64_t>(timeout_ms) * kNanosecondsPerMillisecond;
} else {
options &= ~timeout_options;
deadline = 0;
}
mach_msg_size_t trailer_alloc = REQUESTED_TRAILER_SIZE(options);
mach_msg_size_t max_request_size = interface->MachMessageServerRequestSize();
mach_msg_size_t request_alloc = round_page(max_request_size + trailer_alloc);
mach_msg_size_t request_size = (options & MACH_RCV_LARGE)
? request_alloc
: max_request_size + trailer_alloc;
mach_msg_size_t max_reply_size = interface->MachMessageServerReplySize();
mach_msg_size_t reply_alloc = round_page(
(options & MACH_SEND_TRAILER) ? (max_reply_size + MAX_TRAILER_SIZE)
: max_reply_size);
mach_port_t self = mach_task_self();
kern_return_t kr;
do {
mach_msg_size_t this_request_alloc = request_alloc;
mach_msg_size_t this_request_size = request_size;
base::mac::ScopedMachVM request_scoper;
mach_msg_header_t* request_header = NULL;
while (!request_scoper.address()) {
vm_address_t request_addr;
kr = vm_allocate(self,
&request_addr,
this_request_alloc,
VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_MEMORY_MACH_MSG));
if (kr != KERN_SUCCESS) {
return kr;
}
base::mac::ScopedMachVM trial_request_scoper(request_addr,
this_request_alloc);
request_header = reinterpret_cast<mach_msg_header_t*>(request_addr);
do {
// If |options| contains MACH_RCV_INTERRUPT, retry mach_msg() in a loop
// when it returns MACH_RCV_INTERRUPTED to recompute |remaining_ms|
// rather than allowing mach_msg() to retry using the original timeout
// value. See 10.9.4 xnu-2422.110.17/libsyscall/mach/mach_msg.c
// mach_msg().
mach_msg_timeout_t remaining_ms;
if (!TimerRunning(deadline, &remaining_ms)) {
return MACH_RCV_TIMED_OUT;
}
kr = mach_msg(request_header,
options | MACH_RCV_MSG,
0,
this_request_size,
receive_port,
remaining_ms,
MACH_PORT_NULL);
} while (kr == MACH_RCV_INTERRUPTED);
if (kr == MACH_MSG_SUCCESS) {
request_scoper.swap(trial_request_scoper);
} else if (kr == MACH_RCV_TOO_LARGE && options & MACH_RCV_LARGE) {
this_request_size =
round_page(request_header->msgh_size + trailer_alloc);
this_request_alloc = this_request_size;
} else {
return kr;
}
}
vm_address_t reply_addr;
kr = vm_allocate(self,
&reply_addr,
reply_alloc,
VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_MEMORY_MACH_MSG));
if (kr != KERN_SUCCESS) {
return kr;
}
base::mac::ScopedMachVM reply_scoper(reply_addr, reply_alloc);
mach_msg_header_t* reply_header =
reinterpret_cast<mach_msg_header_t*>(reply_addr);
bool destroy_complex_request = false;
interface->MachMessageServerFunction(
request_header, reply_header, &destroy_complex_request);
if (!(reply_header->msgh_bits & MACH_MSGH_BITS_COMPLEX)) {
mig_reply_error_t* reply_mig =
reinterpret_cast<mig_reply_error_t*>(reply_header);
if (reply_mig->RetCode == MIG_NO_REPLY) {
reply_header->msgh_remote_port = MACH_PORT_NULL;
} else if (reply_mig->RetCode != KERN_SUCCESS &&
request_header->msgh_bits & MACH_MSGH_BITS_COMPLEX) {
destroy_complex_request = true;
}
}
if (destroy_complex_request &&
request_header->msgh_bits & MACH_MSGH_BITS_COMPLEX) {
request_header->msgh_remote_port = MACH_PORT_NULL;
mach_msg_destroy(request_header);
}
if (reply_header->msgh_remote_port != MACH_PORT_NULL) {
// If the reply port right is a send-once right, the send wont block even
// if the remote side isnt waiting for a message. No timeout is used,
// which keeps the communication on the kernels fast path. If the reply
// port right is a send right, MACH_SEND_TIMEOUT is used to avoid blocking
// indefinitely. This duplicates the logic in 10.9.4
// xnu-2422.110.17/libsyscall/mach/mach_msg.c mach_msg_server_once().
mach_msg_option_t send_options =
options | MACH_SEND_MSG |
(MACH_MSGH_BITS_REMOTE(reply_header->msgh_bits) ==
MACH_MSG_TYPE_MOVE_SEND_ONCE
? 0
: MACH_SEND_TIMEOUT);
bool running;
do {
// If |options| contains MACH_SEND_INTERRUPT, retry mach_msg() in a loop
// when it returns MACH_SEND_INTERRUPTED to recompute |remaining_ms|
// rather than allowing mach_msg() to retry using the original timeout
// value. See 10.9.4 xnu-2422.110.17/libsyscall/mach/mach_msg.c
// mach_msg().
mach_msg_timeout_t remaining_ms;
running = TimerRunning(deadline, &remaining_ms);
if (!running) {
// Dont return just yet. If the timer ran out in between the time the
// request was received and now, at least try to send the response.
remaining_ms = 0;
}
kr = mach_msg(reply_header,
send_options,
reply_header->msgh_size,
0,
MACH_PORT_NULL,
remaining_ms,
MACH_PORT_NULL);
} while (kr == MACH_SEND_INTERRUPTED);
if (kr != KERN_SUCCESS) {
if (kr == MACH_SEND_INVALID_DEST || kr == MACH_SEND_TIMED_OUT) {
mach_msg_destroy(reply_header);
}
return kr;
}
if (!running) {
// The reply message was sent successfuly, so act as though the deadline
// was reached before or during the subsequent receive operation when in
// persistent mode, and just return success when not in persistent mode.
return (persistent == kPersistent) ? MACH_RCV_TIMED_OUT : kr;
}
}
} while (persistent == kPersistent);
return kr;
}
} // namespace crashpad

View File

@ -0,0 +1,154 @@
// Copyright 2014 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef CRASHPAD_UTIL_MACH_MACH_MESSAGE_SERVER_H_
#define CRASHPAD_UTIL_MACH_MACH_MESSAGE_SERVER_H_
#include <mach/mach.h>
#include "base/basictypes.h"
namespace crashpad {
//! \brief Runs a Mach message server to handle a Mach RPC request for MIG
//! servers.
//!
//! The principal entry point to this interface is the static Run() method.
class MachMessageServer {
public:
//! \brief A Mach RPC callback interface, called by Run().
class Interface {
public:
//! \brief Handles a Mach RPC request.
//!
//! This method is a stand-in for a MIG-generated Mach RPC server “demux”
//! function such as `exc_server()` and `mach_exc_server()`. Implementations
//! may call such a function directly. This method is expected to behave
//! exactly as these functions behave.
//!
//! \param[in] in The request message, received as a Mach message.
//! \param[out] out The reply message. The caller allocates storage, and the
//! callee is expected to populate the reply message appropriately.
//! After returning, the caller will send this reply as a Mach message
//! via the messages reply port.
//! \param[out] destroy_complex_request `true` if a complex request message
//! is to be destroyed even when handled successfully, `false`
//! otherwise. The traditional behavior is `false`. In this case, the
//! caller only destroys the request message in \a in when the reply
//! message in \a out is not complex and when it indicates a return code
//! other than `KERN_SUCCESS` or `MIG_NO_REPLY`. The assumption is that
//! the rights or out-of-line data carried in a complex message may be
//! retained by the server in this situation, and that it is the
//! responsibility of the server to release these resources as needed.
//! However, in many cases, these resources are not needed beyond the
//! duration of a request-reply transaction, and in such cases, it is
//! less error-prone to always have the caller,
//! MachMessageServer::Run(), destroy complex request messages. To
//! choose this behavior, this parameter should be set to `true`.
//!
//! \return `true` on success and `false` on failure, although the caller
//! ignores the return value. However, the return code to be included in
//! the reply message should be set as `mig_reply_error_t::RetCode`. The
//! non-`void` return value is used for increased compatibility with
//! MIG-generated functions.
virtual bool MachMessageServerFunction(mach_msg_header_t* in,
mach_msg_header_t* out,
bool* destroy_complex_request) = 0;
//! \return The expected or maximum size, in bytes, of a request message to
//! be received as the \a in parameter of MachMessageServerFunction().
virtual mach_msg_size_t MachMessageServerRequestSize() = 0;
//! \return The maximum size, in bytes, of a reply message to be sent via
//! the \a out parameter of MachMessageServerFunction(). This value does
//! not need to include the size of any trailer to be sent with the
//! message.
virtual mach_msg_size_t MachMessageServerReplySize() = 0;
protected:
~Interface() {}
};
//! \brief Informs Run() whether to handle a single request-reply transaction
//! or to run in a loop.
enum Persistent {
//! \brief Handle a single request-reply transaction and then return.
kOneShot = false,
//! \brief Run in a loop, potentially handling multiple request-reply
//! transactions.
kPersistent,
};
//! \brief Informs Run() whether or not to block while waiting for requests.
enum Nonblocking {
//! \brief Wait for a request message if none is queued.
kBlocking = false,
//! \brief Return as soon as there no request messages queued. This may
//! result in an immediate return without handling any requests.
kNonblocking,
};
//! \brief Runs a Mach message server to handle a Mach RPC request for MIG
//! servers.
//!
//! This function listens for a request message and passes it to a callback
//! interface. A reponse is collected from that interface, and is sent back as
//! a reply.
//!
//! This function is similar to `mach_msg_server()` and
//! `mach_msg_server_once()`.
//!
//! \param[in] interface The MachMessageServerInterface that is responsible
//! for handling the message. Interface::MachMessageServerRequestSize() is
//! used as the receive size for the request message, and
//! Interface::MachMessageServerReplySize() is used as the
//! maximum size of the reply message. If \a options contains
//! `MACH_RCV_LARGE`, this function will retry a receive operation that
//! returns `MACH_RCV_TOO_LARGE` with an appropriately-sized buffer.
//! MachMessageServerInterface::MachMessageServerFunction() is called to
//! handle the request and populate the reply.
//! \param[in] receive_port The port on which to receive the request message.
//! \param[in] options Options suitable for mach_msg.
//! \param[in] persistent Chooses between one-shot and persistent operation.
//! \param[in] nonblocking Chooses between blocking and nonblocking operation.
//! \param[in] timeout_ms When \a nonblocking is `false`, the the maximum
//! duration that this entire function will run, in milliseconds, or
//! `MACH_MSG_TIMEOUT_NONE` to specify no timeout (infinite waiting). When
//! \a nonblocking is `true`, this parameter has no effect. When \a
//! persistent is `true`, the timeout applies to the overall duration of
//! this function, not to any individual `mach_msg()` call.
//!
//! \return On success, `KERN_SUCCESS` (when \a persistent is `false`) or
//! `MACH_RCV_TIMED_OUT` (when \a persistent and \a nonblocking are both
//! `true`, or when \a persistent is `true`, \a nonblocking is `false`,
//! and \a timeout is not `MACH_MSG_TIMEOUT_NONE`. This function has no
//! successful return value when \a persistent is `true`, \a nonblocking
//! is `false`, and \a timeout is `MACH_MSG_TIMEOUT_NONE`. On failure,
//! returns a value identifying the nature of the error.
static mach_msg_return_t Run(Interface* interface,
mach_port_t receive_port,
mach_msg_options_t options,
Persistent persistent,
Nonblocking nonblocking,
mach_msg_timeout_t timeout_ms);
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(MachMessageServer);
};
} // namespace crashpad
#endif // CRASHPAD_UTIL_MACH_MACH_MESSAGE_SERVER_H_

View File

@ -0,0 +1,517 @@
// Copyright 2014 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "util/mach/mach_message_server.h"
#include <mach/mach.h>
#include <string.h>
#include "base/basictypes.h"
#include "base/mac/scoped_mach_port.h"
#include "gtest/gtest.h"
#include "util/file/fd_io.h"
#include "util/test/errors.h"
#include "util/test/mac/mach_errors.h"
#include "util/test/mac/mach_multiprocess.h"
namespace {
using namespace crashpad;
using namespace crashpad::test;
class TestMachMessageServer : public MachMessageServer::Interface,
public MachMultiprocess {
public:
struct Options {
// The type of reply port that the client should put in its request message.
enum ReplyPortType {
// The normal reply port is the clients local port, to which it holds
// a receive right. This allows the server to respond directly to the
// client. The client will expect a reply.
kReplyPortNormal,
// Use MACH_PORT_NULL as the reply port, which the server should detect
// avoid attempting to send a message to, and return success. The client
// will not expect a reply.
kReplyPortNull,
// Make the server see the reply port as a dead name by setting the reply
// port to a receive right and then destroying that right before the
// server processes the request. The server should return
// MACH_SEND_INVALID_DEST, and the client will not expect a reply.
kReplyPortDead,
};
Options()
: expect_server_interface_method_called(true),
parent_wait_for_child_pipe(false),
server_persistent(MachMessageServer::kOneShot),
server_nonblocking(MachMessageServer::kBlocking),
server_timeout_ms(MACH_MSG_TIMEOUT_NONE),
server_mig_retcode(KERN_SUCCESS),
expect_server_result(KERN_SUCCESS),
client_send_request_count(1),
client_reply_port_type(kReplyPortNormal),
child_send_all_requests_before_receiving_any_replies(false) {
}
// true if MachMessageServerFunction() is expected to be called.
bool expect_server_interface_method_called;
// true if the parent should wait for the child to write a byte to the pipe
// as a signal that the child is ready for the parent to begin its side of
// the test. This is used for nonblocking tests, which require that there
// be something in the servers queue before attempting a nonblocking
// receive if the receive is to be successful.
bool parent_wait_for_child_pipe;
// Whether the server should run in one-shot or persistent mode.
MachMessageServer::Persistent server_persistent;
// Whether the server should run in blocking or nonblocking mode.
MachMessageServer::Nonblocking server_nonblocking;
// The servers timeout.
mach_msg_timeout_t server_timeout_ms;
// The return code that the server returns to the client via the
// mig_reply_error_t::RetCode field. A client would normally see this as
// a Mach RPC return value.
kern_return_t server_mig_retcode;
// The expected return value from MachMessageServer::Run().
kern_return_t expect_server_result;
// The number of requests that the client should send to the server.
size_t client_send_request_count;
// The type of reply port that the client should provide in its requests
// mach_msg_header_t::msgh_local_port, which will appear to the server as
// mach_msg_header_t::msgh_remote_port.
ReplyPortType client_reply_port_type;
// true if the client should send all requests before attempting to receive
// any replies from the server. This is used for the persistent nonblocking
// test, which requires the client to fill the servers queue before the
// server can attempt processing it.
bool child_send_all_requests_before_receiving_any_replies;
};
explicit TestMachMessageServer(const Options& options)
: MachMessageServer::Interface(),
MachMultiprocess(),
options_(options) {
}
// Runs the test.
void Test() {
EXPECT_EQ(requests_, replies_);
uint32_t start = requests_;
Run();
EXPECT_EQ(requests_, replies_);
EXPECT_EQ(options_.client_send_request_count, requests_ - start);
}
// MachMessageServerInterface:
virtual bool MachMessageServerFunction(
mach_msg_header_t* in,
mach_msg_header_t* out,
bool* destroy_complex_request) override {
*destroy_complex_request = true;
EXPECT_TRUE(options_.expect_server_interface_method_called);
if (!options_.expect_server_interface_method_called) {
return false;
}
struct ReceiveRequestMessage : public RequestMessage {
mach_msg_trailer_t trailer;
};
const ReceiveRequestMessage* request =
reinterpret_cast<ReceiveRequestMessage*>(in);
EXPECT_EQ(static_cast<mach_msg_bits_t>(
MACH_MSGH_BITS(MACH_MSG_TYPE_MOVE_SEND, MACH_MSG_TYPE_MOVE_SEND)),
request->header.msgh_bits);
EXPECT_EQ(sizeof(RequestMessage), request->header.msgh_size);
if (options_.client_reply_port_type == Options::kReplyPortNormal) {
EXPECT_EQ(RemotePort(), request->header.msgh_remote_port);
}
EXPECT_EQ(LocalPort(), request->header.msgh_local_port);
EXPECT_EQ(kRequestMessageId, request->header.msgh_id);
EXPECT_EQ(0, memcmp(&request->ndr, &NDR_record, sizeof(NDR_record)));
EXPECT_EQ(requests_, request->number);
EXPECT_EQ(static_cast<mach_msg_trailer_type_t>(MACH_MSG_TRAILER_FORMAT_0),
request->trailer.msgh_trailer_type);
EXPECT_EQ(MACH_MSG_TRAILER_MINIMUM_SIZE,
request->trailer.msgh_trailer_size);
++requests_;
ReplyMessage* reply = reinterpret_cast<ReplyMessage*>(out);
reply->Head.msgh_bits = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0);
reply->Head.msgh_size = sizeof(*reply);
reply->Head.msgh_remote_port = request->header.msgh_remote_port;
reply->Head.msgh_local_port = MACH_PORT_NULL;
reply->Head.msgh_id = kReplyMessageId;
reply->NDR = NDR_record;
reply->RetCode = options_.server_mig_retcode;
reply->number = replies_++;
return true;
}
virtual mach_msg_size_t MachMessageServerRequestSize() override {
return sizeof(RequestMessage);
}
virtual mach_msg_size_t MachMessageServerReplySize() override {
return sizeof(ReplyMessage);
}
private:
struct RequestMessage {
mach_msg_header_t header;
NDR_record_t ndr;
uint32_t number;
};
struct ReplyMessage : public mig_reply_error_t {
uint32_t number;
};
// MachMultiprocess:
virtual void MachMultiprocessParent() override {
if (options_.parent_wait_for_child_pipe) {
// Wait until the child is done sending what its going to send.
char c;
ssize_t rv = ReadFD(ReadPipeFD(), &c, 1);
EXPECT_EQ(1, rv) << ErrnoMessage("read");
EXPECT_EQ('\0', c);
}
kern_return_t kr;
ASSERT_EQ(options_.expect_server_result,
(kr = MachMessageServer::Run(this,
LocalPort(),
MACH_MSG_OPTION_NONE,
options_.server_persistent,
options_.server_nonblocking,
options_.server_timeout_ms)))
<< MachErrorMessage(kr, "MachMessageServer");
}
virtual void MachMultiprocessChild() override {
for (size_t index = 0;
index < options_.client_send_request_count;
++index) {
if (options_.child_send_all_requests_before_receiving_any_replies) {
// For this test, all of the messages need to go into the queue before
// the parent is allowed to start processing them. Dont attempt to
// process replies before all of the requests are sent, because the
// server wont have sent any replies until all of the requests are in
// its queue.
ChildSendRequest();
} else {
ChildSendRequestAndWaitForReply();
}
if (testing::Test::HasFatalFailure()) {
return;
}
}
if (options_.parent_wait_for_child_pipe &&
options_.child_send_all_requests_before_receiving_any_replies) {
// Now that all of the requests have been sent, let the parent know that
// its safe to begin processing them, and then wait for the replies.
ChildNotifyParentViaPipe();
if (testing::Test::HasFatalFailure()) {
return;
}
for (size_t index = 0;
index < options_.client_send_request_count;
++index) {
ChildWaitForReply();
if (testing::Test::HasFatalFailure()) {
return;
}
}
}
}
// In the child process, sends a request message to the server.
void ChildSendRequest() {
// local_receive_port_owner will the receive right that is created in this
// scope and intended to be destroyed when leaving this scope, after it has
// been carried in a Mach message.
base::mac::ScopedMachReceiveRight local_receive_port_owner;
RequestMessage request = {};
request.header.msgh_bits =
MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, MACH_MSG_TYPE_MAKE_SEND);
request.header.msgh_size = sizeof(request);
request.header.msgh_remote_port = RemotePort();
kern_return_t kr;
switch (options_.client_reply_port_type) {
case Options::kReplyPortNormal:
request.header.msgh_local_port = LocalPort();
break;
case Options::kReplyPortNull:
request.header.msgh_local_port = MACH_PORT_NULL;
break;
case Options::kReplyPortDead: {
// Use a newly-allocated receive right that will be destroyed when this
// method returns. A send right will be made from this receive right and
// carried in the request message to the server. By the time the server
// looks at the right, it will have become a dead name.
kr = mach_port_allocate(mach_task_self(),
MACH_PORT_RIGHT_RECEIVE,
&request.header.msgh_local_port);
ASSERT_EQ(KERN_SUCCESS, kr)
<< MachErrorMessage(kr, "mach_port_allocate");
local_receive_port_owner.reset(request.header.msgh_local_port);
break;
}
}
request.header.msgh_id = kRequestMessageId;
request.number = requests_++;
request.ndr = NDR_record;
kr = mach_msg(&request.header,
MACH_SEND_MSG | MACH_SEND_TIMEOUT,
request.header.msgh_size,
0,
MACH_PORT_NULL,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);
ASSERT_EQ(MACH_MSG_SUCCESS, kr) << MachErrorMessage(kr, "mach_msg");
}
// In the child process, waits for a reply message from the server.
void ChildWaitForReply() {
if (options_.client_reply_port_type != Options::kReplyPortNormal) {
// The client shouldnt expect a reply when it didnt send a good reply
// port with its request.
return;
}
struct ReceiveReplyMessage : public ReplyMessage {
mach_msg_trailer_t trailer;
};
ReceiveReplyMessage reply = {};
kern_return_t kr = mach_msg(&reply.Head,
MACH_RCV_MSG,
0,
sizeof(reply),
LocalPort(),
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);
ASSERT_EQ(MACH_MSG_SUCCESS, kr) << MachErrorMessage(kr, "mach_msg");
ASSERT_EQ(static_cast<mach_msg_bits_t>(
MACH_MSGH_BITS(0, MACH_MSG_TYPE_MOVE_SEND)), reply.Head.msgh_bits);
ASSERT_EQ(sizeof(ReplyMessage), reply.Head.msgh_size);
ASSERT_EQ(static_cast<mach_port_t>(MACH_PORT_NULL),
reply.Head.msgh_remote_port);
ASSERT_EQ(LocalPort(), reply.Head.msgh_local_port);
ASSERT_EQ(kReplyMessageId, reply.Head.msgh_id);
ASSERT_EQ(0, memcmp(&reply.NDR, &NDR_record, sizeof(NDR_record)));
ASSERT_EQ(options_.server_mig_retcode, reply.RetCode);
ASSERT_EQ(replies_, reply.number);
ASSERT_EQ(static_cast<mach_msg_trailer_type_t>(MACH_MSG_TRAILER_FORMAT_0),
reply.trailer.msgh_trailer_type);
ASSERT_EQ(MACH_MSG_TRAILER_MINIMUM_SIZE, reply.trailer.msgh_trailer_size);
++replies_;
}
// For test types where the child needs to notify the server in the parent
// that the child is ready, this method will send a byte via the POSIX pipe.
// The parent will be waiting in a read() on this pipe, and will proceed to
// running MachMessageServer() once its received.
void ChildNotifyParentViaPipe() {
char c = '\0';
ssize_t rv = WriteFD(WritePipeFD(), &c, 1);
ASSERT_EQ(1, rv) << ErrnoMessage("write");
}
// In the child process, sends a request message to the server and then
// receives a reply message.
void ChildSendRequestAndWaitForReply() {
ChildSendRequest();
if (testing::Test::HasFatalFailure()) {
return;
}
if (options_.parent_wait_for_child_pipe &&
!options_.child_send_all_requests_before_receiving_any_replies) {
// The parent is waiting to read a byte to indicate that the message has
// been placed in the queue.
ChildNotifyParentViaPipe();
if (testing::Test::HasFatalFailure()) {
return;
}
}
ChildWaitForReply();
}
const Options& options_;
static uint32_t requests_;
static uint32_t replies_;
static const mach_msg_id_t kRequestMessageId = 16237;
static const mach_msg_id_t kReplyMessageId = kRequestMessageId + 100;
DISALLOW_COPY_AND_ASSIGN(TestMachMessageServer);
};
uint32_t TestMachMessageServer::requests_;
uint32_t TestMachMessageServer::replies_;
const mach_msg_id_t TestMachMessageServer::kRequestMessageId;
const mach_msg_id_t TestMachMessageServer::kReplyMessageId;
TEST(MachMessageServer, Basic) {
// The client sends one message to the server, which will wait indefinitely in
// blocking mode for it.
TestMachMessageServer::Options options;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, NonblockingNoMessage) {
// The server waits in nonblocking mode and the client sends nothing, so the
// server should return immediately without processing any message.
TestMachMessageServer::Options options;
options.expect_server_interface_method_called = false;
options.server_nonblocking = MachMessageServer::kNonblocking;
options.expect_server_result = MACH_RCV_TIMED_OUT;
options.client_send_request_count = 0;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, TimeoutNoMessage) {
// The server waits in blocking mode for one message, but with a timeout. The
// client sends no message, so the server returns after the timeout.
TestMachMessageServer::Options options;
options.expect_server_interface_method_called = false;
options.server_timeout_ms = 10;
options.expect_server_result = MACH_RCV_TIMED_OUT;
options.client_send_request_count = 0;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, Nonblocking) {
// The client sends one message to the server and then signals the server that
// its safe to start waiting for it in nonblocking mode. The message is in
// the servers queue, so its able to receive it when it begins listening in
// nonblocking mode.
TestMachMessageServer::Options options;
options.parent_wait_for_child_pipe = true;
options.server_nonblocking = MachMessageServer::kNonblocking;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, Timeout) {
// The client sends one message to the server, which will wait in blocking
// mode for it up to a specific timeout.
TestMachMessageServer::Options options;
options.server_timeout_ms = 10;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, PersistentTenMessages) {
// The server waits for as many messages as it can receive in blocking mode
// with a timeout. The client sends several messages, and the server processes
// them all.
TestMachMessageServer::Options options;
options.server_persistent = MachMessageServer::kPersistent;
options.server_timeout_ms = 10;
options.expect_server_result = MACH_RCV_TIMED_OUT;
options.client_send_request_count = 10;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, PersistentNonblockingFourMessages) {
// The client sends several messages to the server and then signals the server
// that its safe to start waiting for them in nonblocking mode. The server
// then listens for them in nonblocking persistent mode, and receives all of
// them because theyve been queued up. The client doesnt wait for the
// replies until after its put all of its requests into the servers queue.
//
// This test is sensitive to the length of the IPC queue limit. Mach ports
// normally have a queue length limit of MACH_PORT_QLIMIT_DEFAULT (which is
// MACH_PORT_QLIMIT_BASIC, or 5). The number of messages sent for this test
// must be below this, because the server does not begin dequeueing request
// messages until the client has finished sending them.
TestMachMessageServer::Options options;
options.parent_wait_for_child_pipe = true;
options.server_persistent = MachMessageServer::kPersistent;
options.server_nonblocking = MachMessageServer::kNonblocking;
options.expect_server_result = MACH_RCV_TIMED_OUT;
options.client_send_request_count = 4;
options.child_send_all_requests_before_receiving_any_replies = true;
TestMachMessageServer test_mach_message_server(options);
test_mach_message_server.Test();
}
TEST(MachMessageServer, ReturnCodeInvalidArgument) {
// This tests that the mig_reply_error_t::RetCode field is properly returned
// to the client.
TestMachMessageServer::Options options;
TestMachMessageServer test_mach_message_server(options);
options.server_mig_retcode = KERN_INVALID_ARGUMENT;
test_mach_message_server.Test();
}
TEST(MachMessageServer, ReplyPortNull) {
// The client sets its reply port to MACH_PORT_NULL. The server should see
// this and avoid sending a message to the null port. No reply message is
// sent and the server returns success.
TestMachMessageServer::Options options;
TestMachMessageServer test_mach_message_server(options);
options.client_reply_port_type =
TestMachMessageServer::Options::kReplyPortNull;
test_mach_message_server.Test();
}
TEST(MachMessageServer, ReplyPortDead) {
// The client allocates a new port and uses it as the reply port in its
// request message, and then deallocates its receive right to that port. It
// then signals the server to process the request message. The servers view
// of the port is that it is a dead name. The server function will return
// MACH_SEND_INVALID_DEST because its not possible to send a message to a
// dead name.
TestMachMessageServer::Options options;
TestMachMessageServer test_mach_message_server(options);
options.parent_wait_for_child_pipe = true;
options.expect_server_result = MACH_SEND_INVALID_DEST;
options.client_reply_port_type =
TestMachMessageServer::Options::kReplyPortDead;
test_mach_message_server.Test();
}
} // namespace

View File

@ -61,6 +61,8 @@
'mac/process_types/traits.h',
'mach/bootstrap.cc',
'mach/bootstrap.h',
'mach/mach_message_server.cc',
'mach/mach_message_server.h',
'mach/task_memory.cc',
'mach/task_memory.h',
'misc/initialization_state.h',
@ -181,6 +183,7 @@
'mac/process_types_test.cc',
'mac/service_management_test.mm',
'mach/bootstrap_test.cc',
'mach/mach_message_server_test.cc',
'mach/task_memory_test.cc',
'misc/initialization_state_dcheck_test.cc',
'misc/initialization_state_test.cc',