crashpad/util/win/process_info_test.cc

653 lines
21 KiB
C++
Raw Normal View History

// Copyright 2015 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "util/win/process_info.h"
#include <dbghelp.h>
#include <intrin.h>
#include <wchar.h>
#include <memory>
#include "base/files/file_path.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "build/build_config.h"
#include "gtest/gtest.h"
#include "test/errors.h"
#include "test/paths.h"
#include "test/scoped_temp_dir.h"
#include "test/win/child_launcher.h"
#include "util/file/file_io.h"
#include "util/misc/random_string.h"
#include "util/misc/uuid.h"
#include "util/win/command_line.h"
#include "util/win/get_function.h"
#include "util/win/handle.h"
#include "util/win/scoped_handle.h"
namespace crashpad {
namespace test {
namespace {
const wchar_t kNtdllName[] = L"\\ntdll.dll";
bool IsProcessWow64(HANDLE process_handle) {
static const auto is_wow64_process =
GET_FUNCTION(L"kernel32.dll", ::IsWow64Process);
if (!is_wow64_process)
return false;
BOOL is_wow64;
if (!is_wow64_process(process_handle, &is_wow64)) {
PLOG(ERROR) << "IsWow64Process";
return false;
}
return !!is_wow64;
}
void VerifyAddressInInCodePage(const ProcessInfo& process_info,
WinVMAddress code_address) {
// Make sure the child code address is an code page address with the right
// information.
const ProcessInfo::MemoryBasicInformation64Vector& memory_info =
process_info.MemoryInfo();
bool found_region = false;
for (const auto& mi : memory_info) {
if (mi.BaseAddress <= code_address &&
mi.BaseAddress + mi.RegionSize > code_address) {
EXPECT_EQ(MEM_COMMIT, mi.State);
EXPECT_EQ(PAGE_EXECUTE_READ, mi.Protect);
EXPECT_EQ(MEM_IMAGE, mi.Type);
EXPECT_FALSE(found_region);
found_region = true;
}
}
EXPECT_TRUE(found_region);
}
TEST(ProcessInfo, Self) {
ProcessInfo process_info;
ASSERT_TRUE(process_info.Initialize(GetCurrentProcess()));
EXPECT_EQ(GetCurrentProcessId(), process_info.ProcessID());
EXPECT_GT(process_info.ParentProcessID(), 0u);
#if defined(ARCH_CPU_64_BITS)
EXPECT_TRUE(process_info.Is64Bit());
EXPECT_FALSE(process_info.IsWow64());
#else
EXPECT_FALSE(process_info.Is64Bit());
if (IsProcessWow64(GetCurrentProcess()))
EXPECT_TRUE(process_info.IsWow64());
else
EXPECT_FALSE(process_info.IsWow64());
#endif
std::wstring command_line;
EXPECT_TRUE(process_info.CommandLine(&command_line));
EXPECT_EQ(std::wstring(GetCommandLine()), command_line);
std::vector<ProcessInfo::Module> modules;
EXPECT_TRUE(process_info.Modules(&modules));
ASSERT_GE(modules.size(), 2u);
const wchar_t kSelfName[] = L"\\crashpad_util_test.exe";
ASSERT_GE(modules[0].name.size(), wcslen(kSelfName));
EXPECT_EQ(kSelfName,
modules[0].name.substr(modules[0].name.size() - wcslen(kSelfName)));
ASSERT_GE(modules[1].name.size(), wcslen(kNtdllName));
EXPECT_EQ(
kNtdllName,
modules[1].name.substr(modules[1].name.size() - wcslen(kNtdllName)));
EXPECT_EQ(reinterpret_cast<uintptr_t>(GetModuleHandle(nullptr)),
modules[0].dll_base);
EXPECT_EQ(reinterpret_cast<uintptr_t>(GetModuleHandle(L"ntdll.dll")),
modules[1].dll_base);
EXPECT_GT(modules[0].size, 0);
EXPECT_GT(modules[1].size, 0);
EXPECT_EQ(GetTimestampForLoadedLibrary(GetModuleHandle(nullptr)),
modules[0].timestamp);
// System modules are forced to particular stamps and the file header values
// don't match the on-disk times. Just make sure we got some data here.
EXPECT_GT(modules[1].timestamp, 0);
// Find something we know is a code address and confirm expected memory
// information settings.
VerifyAddressInInCodePage(process_info,
reinterpret_cast<WinVMAddress>(_ReturnAddress()));
}
void TestOtherProcess(const base::string16& directory_modification) {
ProcessInfo process_info;
UUID done_uuid;
done_uuid.InitializeWithNew();
ScopedKernelHANDLE done(
CreateEvent(nullptr, true, false, done_uuid.ToString16().c_str()));
ASSERT_TRUE(done.get()) << ErrorMessage("CreateEvent");
base::FilePath test_executable = Paths::Executable();
std::wstring child_test_executable =
test_executable.DirName()
.Append(directory_modification)
.Append(test_executable.BaseName().RemoveFinalExtension().value() +
L"_process_info_test_child.exe")
.value();
std::wstring args;
AppendCommandLineArgument(done_uuid.ToString16(), &args);
ChildLauncher child(child_test_executable, args);
child.Start();
// The child sends us a code address we can look up in the memory map.
WinVMAddress code_address;
Make file_io reads more rational and predictable ReadFile() attempted to continue reading after a short read. In most cases, this is fine. However, ReadFile() would keep trying to fill a partially-filled buffer until experiencing a 0-length read(), signaling end-of-file. For certain weird file descriptors like terminal input, EOF is an ephemeral condition, and attempting to read beyond EOF doesn’t actually return 0 (EOF) provided that they remain open, it will block waiting for more input. Consequently, ReadFile() and anything based on ReadFile() had an undocumented and quirky interface, which was that any short read that it returned (not an underlying short read) actually indicated EOF. This facet of ReadFile() was unexpected, so it’s being removed. The new behavior is that ReadFile() will return an underlying short read. The behavior of FileReaderInterface::Read() is updated in accordance with this change. Upon experiencing a short read, the caller can determine the best action. Most callers were already prepared for this behavior. Outside of util/file, only crashpad_database_util properly implemented EOF detection according to previous semantics, and adapting it to new semantics is trivial. Callers who require an exact-length read can use the new ReadFileExactly(), or the newly renamed LoggingReadFileExactly() or CheckedReadFileExactly(). These functions will retry following a short read. The renamed functions were previously called LoggingReadFile() and CheckedReadFile(), but those names implied that they were simply wrapping ReadFile(), which is not the case. They wrapped ReadFile() and further, insisted on a full read. Since ReadFile()’s semantics are now changing but these functions’ are not, they’re now even more distinct from ReadFile(), and must be renamed to avoid confusion. Test: * Change-Id: I06b77e0d6ad8719bd2eb67dab93a8740542dd908 Reviewed-on: https://chromium-review.googlesource.com/456676 Reviewed-by: Robert Sesek <rsesek@chromium.org>
2017-03-16 13:36:38 -04:00
CheckedReadFileExactly(
child.stdout_read_handle(), &code_address, sizeof(code_address));
ASSERT_TRUE(process_info.Initialize(child.process_handle()));
// Tell the test it's OK to shut down now that we've read our data.
EXPECT_TRUE(SetEvent(done.get())) << ErrorMessage("SetEvent");
EXPECT_EQ(0, child.WaitForExit());
std::vector<ProcessInfo::Module> modules;
EXPECT_TRUE(process_info.Modules(&modules));
ASSERT_GE(modules.size(), 3u);
std::wstring child_name = L"\\crashpad_util_test_process_info_test_child.exe";
ASSERT_GE(modules[0].name.size(), child_name.size());
EXPECT_EQ(child_name,
modules[0].name.substr(modules[0].name.size() - child_name.size()));
ASSERT_GE(modules[1].name.size(), wcslen(kNtdllName));
EXPECT_EQ(
kNtdllName,
modules[1].name.substr(modules[1].name.size() - wcslen(kNtdllName)));
// lz32.dll is an uncommonly-used-but-always-available module that the test
// binary manually loads.
const wchar_t kLz32dllName[] = L"\\lz32.dll";
ASSERT_GE(modules.back().name.size(), wcslen(kLz32dllName));
EXPECT_EQ(kLz32dllName,
modules.back().name.substr(modules.back().name.size() -
wcslen(kLz32dllName)));
VerifyAddressInInCodePage(process_info, code_address);
}
TEST(ProcessInfo, OtherProcess) {
TestOtherProcess(FILE_PATH_LITERAL("."));
}
#if defined(ARCH_CPU_64_BITS)
TEST(ProcessInfo, OtherProcessWOW64) {
#ifndef NDEBUG
TestOtherProcess(FILE_PATH_LITERAL("..\\..\\out\\Debug"));
#else
TestOtherProcess(FILE_PATH_LITERAL("..\\..\\out\\Release"));
#endif
}
#endif // ARCH_CPU_64_BITS
TEST(ProcessInfo, AccessibleRangesNone) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_FREE;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(2, 4),
memory_info);
EXPECT_TRUE(result.empty());
}
TEST(ProcessInfo, AccessibleRangesOneInside) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(2, 4),
memory_info);
ASSERT_EQ(1u, result.size());
EXPECT_EQ(2, result[0].base());
EXPECT_EQ(4, result[0].size());
}
TEST(ProcessInfo, AccessibleRangesOneTruncatedSize) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
mbi.BaseAddress = 10;
mbi.RegionSize = 20;
mbi.State = MEM_FREE;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(5, 10),
memory_info);
ASSERT_EQ(1u, result.size());
EXPECT_EQ(5, result[0].base());
EXPECT_EQ(5, result[0].size());
}
TEST(ProcessInfo, AccessibleRangesOneMovedStart) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_FREE;
memory_info.push_back(mbi);
mbi.BaseAddress = 10;
mbi.RegionSize = 20;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(5, 10),
memory_info);
ASSERT_EQ(1u, result.size());
EXPECT_EQ(10, result[0].base());
EXPECT_EQ(5, result[0].size());
}
TEST(ProcessInfo, ReserveIsInaccessible) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_RESERVE;
memory_info.push_back(mbi);
mbi.BaseAddress = 10;
mbi.RegionSize = 20;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(5, 10),
memory_info);
ASSERT_EQ(1u, result.size());
EXPECT_EQ(10, result[0].base());
EXPECT_EQ(5, result[0].size());
}
TEST(ProcessInfo, PageGuardIsInaccessible) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_COMMIT;
mbi.Protect = PAGE_GUARD;
memory_info.push_back(mbi);
mbi.BaseAddress = 10;
mbi.RegionSize = 20;
mbi.State = MEM_COMMIT;
mbi.Protect = 0;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(5, 10),
memory_info);
ASSERT_EQ(1u, result.size());
EXPECT_EQ(10, result[0].base());
EXPECT_EQ(5, result[0].size());
}
TEST(ProcessInfo, PageNoAccessIsInaccessible) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_COMMIT;
mbi.Protect = PAGE_NOACCESS;
memory_info.push_back(mbi);
mbi.BaseAddress = 10;
mbi.RegionSize = 20;
mbi.State = MEM_COMMIT;
mbi.Protect = 0;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(5, 10),
memory_info);
ASSERT_EQ(1u, result.size());
EXPECT_EQ(10, result[0].base());
EXPECT_EQ(5, result[0].size());
}
TEST(ProcessInfo, AccessibleRangesCoalesced) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_FREE;
memory_info.push_back(mbi);
mbi.BaseAddress = 10;
mbi.RegionSize = 2;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
mbi.BaseAddress = 12;
mbi.RegionSize = 5;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(11, 4),
memory_info);
ASSERT_EQ(1u, result.size());
EXPECT_EQ(11, result[0].base());
EXPECT_EQ(4, result[0].size());
}
TEST(ProcessInfo, AccessibleRangesMiddleUnavailable) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 0;
mbi.RegionSize = 10;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
mbi.BaseAddress = 10;
mbi.RegionSize = 5;
mbi.State = MEM_FREE;
memory_info.push_back(mbi);
mbi.BaseAddress = 15;
mbi.RegionSize = 100;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(5, 45),
memory_info);
ASSERT_EQ(2u, result.size());
EXPECT_EQ(5, result[0].base());
EXPECT_EQ(5, result[0].size());
EXPECT_EQ(15, result[1].base());
EXPECT_EQ(35, result[1].size());
}
TEST(ProcessInfo, RequestedBeforeMap) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 10;
mbi.RegionSize = 10;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(CheckedRange<WinVMAddress, WinVMSize>(5, 10),
memory_info);
ASSERT_EQ(1u, result.size());
EXPECT_EQ(10, result[0].base());
EXPECT_EQ(5, result[0].size());
}
TEST(ProcessInfo, RequestedAfterMap) {
ProcessInfo::MemoryBasicInformation64Vector memory_info;
MEMORY_BASIC_INFORMATION64 mbi = {0};
mbi.BaseAddress = 10;
mbi.RegionSize = 10;
mbi.State = MEM_COMMIT;
memory_info.push_back(mbi);
std::vector<CheckedRange<WinVMAddress, WinVMSize>> result =
GetReadableRangesOfMemoryMap(
CheckedRange<WinVMAddress, WinVMSize>(15, 100), memory_info);
ASSERT_EQ(1u, result.size());
EXPECT_EQ(15, result[0].base());
EXPECT_EQ(5, result[0].size());
}
TEST(ProcessInfo, ReadableRanges) {
SYSTEM_INFO system_info;
GetSystemInfo(&system_info);
const size_t kBlockSize = system_info.dwPageSize;
// Allocate 6 pages, and then commit the second, fourth, and fifth, and mark
// two as committed, but PAGE_NOACCESS, so we have a setup like this:
// 0 1 2 3 4 5
// +-----------------------------------------------+
// | ????? | | xxxxx | | | ????? |
// +-----------------------------------------------+
void* reserve_region =
VirtualAlloc(nullptr, kBlockSize * 6, MEM_RESERVE, PAGE_READWRITE);
ASSERT_TRUE(reserve_region);
uintptr_t reserved_as_int = reinterpret_cast<uintptr_t>(reserve_region);
void* readable1 =
VirtualAlloc(reinterpret_cast<void*>(reserved_as_int + kBlockSize),
kBlockSize,
MEM_COMMIT,
PAGE_READWRITE);
ASSERT_TRUE(readable1);
void* readable2 =
VirtualAlloc(reinterpret_cast<void*>(reserved_as_int + (kBlockSize * 3)),
kBlockSize * 2,
MEM_COMMIT,
PAGE_READWRITE);
ASSERT_TRUE(readable2);
void* no_access =
VirtualAlloc(reinterpret_cast<void*>(reserved_as_int + (kBlockSize * 2)),
kBlockSize,
MEM_COMMIT,
PAGE_NOACCESS);
ASSERT_TRUE(no_access);
HANDLE current_process = GetCurrentProcess();
ProcessInfo info;
info.Initialize(current_process);
auto ranges = info.GetReadableRanges(
CheckedRange<WinVMAddress, WinVMSize>(reserved_as_int, kBlockSize * 6));
ASSERT_EQ(2u, ranges.size());
EXPECT_EQ(reserved_as_int + kBlockSize, ranges[0].base());
EXPECT_EQ(kBlockSize, ranges[0].size());
EXPECT_EQ(reserved_as_int + (kBlockSize * 3), ranges[1].base());
EXPECT_EQ(kBlockSize * 2, ranges[1].size());
// Also make sure what we think we can read corresponds with what we can
// actually read.
std::unique_ptr<unsigned char[]> into(new unsigned char[kBlockSize * 6]);
SIZE_T bytes_read;
EXPECT_TRUE(ReadProcessMemory(
current_process, readable1, into.get(), kBlockSize, &bytes_read));
EXPECT_EQ(kBlockSize, bytes_read);
EXPECT_TRUE(ReadProcessMemory(
current_process, readable2, into.get(), kBlockSize * 2, &bytes_read));
EXPECT_EQ(kBlockSize * 2, bytes_read);
EXPECT_FALSE(ReadProcessMemory(
current_process, no_access, into.get(), kBlockSize, &bytes_read));
EXPECT_FALSE(ReadProcessMemory(
current_process, reserve_region, into.get(), kBlockSize, &bytes_read));
EXPECT_FALSE(ReadProcessMemory(current_process,
reserve_region,
into.get(),
kBlockSize * 6,
&bytes_read));
}
struct ScopedRegistryKeyCloseTraits {
static HKEY InvalidValue() {
return nullptr;
}
static void Free(HKEY key) {
RegCloseKey(key);
}
};
using ScopedRegistryKey =
base::ScopedGeneric<HKEY, ScopedRegistryKeyCloseTraits>;
TEST(ProcessInfo, Handles) {
ScopedTempDir temp_dir;
ScopedFileHandle file(LoggingOpenFileForWrite(
temp_dir.path().Append(FILE_PATH_LITERAL("test_file")),
FileWriteMode::kTruncateOrCreate,
FilePermissions::kWorldReadable));
ASSERT_TRUE(file.is_valid());
SECURITY_ATTRIBUTES security_attributes = {0};
security_attributes.nLength = sizeof(security_attributes);
security_attributes.bInheritHandle = true;
ScopedFileHandle inherited_file(CreateFile(
temp_dir.path().Append(FILE_PATH_LITERAL("inheritable")).value().c_str(),
GENERIC_WRITE,
0,
&security_attributes,
CREATE_NEW,
FILE_ATTRIBUTE_NORMAL,
nullptr));
ASSERT_TRUE(inherited_file.is_valid());
HKEY key;
ASSERT_EQ(ERROR_SUCCESS,
RegOpenKeyEx(
HKEY_CURRENT_USER, L"SOFTWARE\\Microsoft", 0, KEY_READ, &key));
ScopedRegistryKey scoped_key(key);
ASSERT_TRUE(scoped_key.is_valid());
std::wstring mapping_name =
base::UTF8ToUTF16(base::StringPrintf("Local\\test_mapping_%d_%s",
GetCurrentProcessId(),
RandomString().c_str()));
ScopedKernelHANDLE mapping(CreateFileMapping(INVALID_HANDLE_VALUE,
nullptr,
PAGE_READWRITE,
0,
1024,
mapping_name.c_str()));
ASSERT_TRUE(mapping.is_valid()) << ErrorMessage("CreateFileMapping");
ProcessInfo info;
info.Initialize(GetCurrentProcess());
bool found_file_handle = false;
bool found_inherited_file_handle = false;
bool found_key_handle = false;
bool found_mapping_handle = false;
for (auto handle : info.Handles()) {
if (handle.handle == HandleToInt(file.get())) {
EXPECT_FALSE(found_file_handle);
found_file_handle = true;
EXPECT_EQ(L"File", handle.type_name);
EXPECT_EQ(1, handle.handle_count);
EXPECT_NE(0u, handle.pointer_count);
EXPECT_EQ(STANDARD_RIGHTS_READ | STANDARD_RIGHTS_WRITE | SYNCHRONIZE,
handle.granted_access & STANDARD_RIGHTS_ALL);
EXPECT_EQ(0, handle.attributes);
}
if (handle.handle == HandleToInt(inherited_file.get())) {
EXPECT_FALSE(found_inherited_file_handle);
found_inherited_file_handle = true;
EXPECT_EQ(L"File", handle.type_name);
EXPECT_EQ(1, handle.handle_count);
EXPECT_NE(0u, handle.pointer_count);
EXPECT_EQ(STANDARD_RIGHTS_READ | STANDARD_RIGHTS_WRITE | SYNCHRONIZE,
handle.granted_access & STANDARD_RIGHTS_ALL);
// OBJ_INHERIT from ntdef.h, but including that conflicts with other
// headers.
const int kObjInherit = 0x2;
EXPECT_EQ(kObjInherit, handle.attributes);
}
if (handle.handle == HandleToInt(scoped_key.get())) {
EXPECT_FALSE(found_key_handle);
found_key_handle = true;
EXPECT_EQ(L"Key", handle.type_name);
EXPECT_EQ(1, handle.handle_count);
EXPECT_NE(0u, handle.pointer_count);
EXPECT_EQ(STANDARD_RIGHTS_READ,
handle.granted_access & STANDARD_RIGHTS_ALL);
EXPECT_EQ(0, handle.attributes);
}
if (handle.handle == HandleToInt(mapping.get())) {
EXPECT_FALSE(found_mapping_handle);
found_mapping_handle = true;
EXPECT_EQ(L"Section", handle.type_name);
EXPECT_EQ(1, handle.handle_count);
EXPECT_NE(0u, handle.pointer_count);
EXPECT_EQ(DELETE | READ_CONTROL | WRITE_DAC | WRITE_OWNER |
STANDARD_RIGHTS_READ | STANDARD_RIGHTS_WRITE,
handle.granted_access & STANDARD_RIGHTS_ALL);
EXPECT_EQ(0, handle.attributes);
}
}
EXPECT_TRUE(found_file_handle);
EXPECT_TRUE(found_inherited_file_handle);
EXPECT_TRUE(found_key_handle);
EXPECT_TRUE(found_mapping_handle);
}
TEST(ProcessInfo, OutOfRangeCheck) {
const size_t kAllocationSize = 12345;
std::unique_ptr<char[]> safe_memory(new char[kAllocationSize]);
ProcessInfo info;
info.Initialize(GetCurrentProcess());
EXPECT_TRUE(
info.LoggingRangeIsFullyReadable(CheckedRange<WinVMAddress, WinVMSize>(
reinterpret_cast<WinVMAddress>(safe_memory.get()), kAllocationSize)));
EXPECT_FALSE(info.LoggingRangeIsFullyReadable(
CheckedRange<WinVMAddress, WinVMSize>(0, 1024)));
}
} // namespace
} // namespace test
} // namespace crashpad