crashpad/snapshot/mac/process_reader_test.cc

841 lines
29 KiB
C++
Raw Normal View History

// Copyright 2014 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "snapshot/mac/process_reader.h"
#include <AvailabilityMacros.h>
#include <mach-o/dyld.h>
#include <mach-o/dyld_images.h>
#include <mach/mach.h>
#include <OpenCL/opencl.h>
#include <string.h>
#include <sys/stat.h>
#include <map>
#include <string>
#include <vector>
#include "base/logging.h"
#include "base/mac/scoped_mach_port.h"
#include "base/posix/eintr_wrapper.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "gtest/gtest.h"
#include "snapshot/mac/mach_o_image_reader.h"
#include "test/errors.h"
#include "test/mac/dyld.h"
#include "test/mac/mach_errors.h"
#include "test/mac/mach_multiprocess.h"
#include "util/file/file_io.h"
#include "util/mac/mac_util.h"
#include "util/mach/mach_extensions.h"
#include "util/stdlib/pointer_container.h"
#include "util/synchronization/semaphore.h"
#if !defined(MAC_OS_X_VERSION_10_10) || \
MAC_OS_X_VERSION_MIN_REQUIRED < MAC_OS_X_VERSION_10_10
extern "C" {
// Redeclare a typedef whose availability (OSX 10.10) is newer than the
// deployment target.
typedef struct _cl_device_id* cl_device_id;
} // extern "C"
#endif
namespace crashpad {
namespace test {
namespace {
const char kDyldPath[] = "/usr/lib/dyld";
TEST(ProcessReader, SelfBasic) {
ProcessReader process_reader;
ASSERT_TRUE(process_reader.Initialize(mach_task_self()));
#if !defined(ARCH_CPU_64_BITS)
EXPECT_FALSE(process_reader.Is64Bit());
#else
EXPECT_TRUE(process_reader.Is64Bit());
#endif
EXPECT_EQ(getpid(), process_reader.ProcessID());
EXPECT_EQ(getppid(), process_reader.ParentProcessID());
const char kTestMemory[] = "Some test memory";
char buffer[arraysize(kTestMemory)];
ASSERT_TRUE(process_reader.Memory()->Read(
reinterpret_cast<mach_vm_address_t>(kTestMemory),
sizeof(kTestMemory),
&buffer));
EXPECT_STREQ(kTestMemory, buffer);
}
const char kTestMemory[] = "Read me from another process";
class ProcessReaderChild final : public MachMultiprocess {
public:
ProcessReaderChild() : MachMultiprocess() {}
~ProcessReaderChild() {}
private:
void MachMultiprocessParent() override {
ProcessReader process_reader;
ASSERT_TRUE(process_reader.Initialize(ChildTask()));
#if !defined(ARCH_CPU_64_BITS)
EXPECT_FALSE(process_reader.Is64Bit());
#else
EXPECT_TRUE(process_reader.Is64Bit());
#endif
EXPECT_EQ(getpid(), process_reader.ParentProcessID());
EXPECT_EQ(ChildPID(), process_reader.ProcessID());
FileHandle read_handle = ReadPipeHandle();
mach_vm_address_t address;
CheckedReadFile(read_handle, &address, sizeof(address));
std::string read_string;
ASSERT_TRUE(process_reader.Memory()->ReadCString(address, &read_string));
EXPECT_EQ(kTestMemory, read_string);
}
void MachMultiprocessChild() override {
FileHandle write_handle = WritePipeHandle();
mach_vm_address_t address =
reinterpret_cast<mach_vm_address_t>(kTestMemory);
CheckedWriteFile(write_handle, &address, sizeof(address));
// Wait for the parent to signal that its OK to exit by closing its end of
// the pipe.
CheckedReadFileAtEOF(ReadPipeHandle());
}
DISALLOW_COPY_AND_ASSIGN(ProcessReaderChild);
};
TEST(ProcessReader, ChildBasic) {
ProcessReaderChild process_reader_child;
process_reader_child.Run();
}
// Returns a thread ID given a pthread_t. This wraps pthread_threadid_np() but
// that function has a cumbersome interface because it returns a success value.
// This function CHECKs success and returns the thread ID directly.
uint64_t PthreadToThreadID(pthread_t pthread) {
uint64_t thread_id;
int rv = pthread_threadid_np(pthread, &thread_id);
CHECK_EQ(rv, 0);
return thread_id;
}
TEST(ProcessReader, SelfOneThread) {
ProcessReader process_reader;
ASSERT_TRUE(process_reader.Initialize(mach_task_self()));
const std::vector<ProcessReader::Thread>& threads = process_reader.Threads();
// If other tests ran in this process previously, threads may have been
// created and may still be running. This check must look for at least one
// thread, not exactly one thread.
ASSERT_GE(threads.size(), 1u);
EXPECT_EQ(PthreadToThreadID(pthread_self()), threads[0].id);
thread_t thread_self = MachThreadSelf();
EXPECT_EQ(thread_self, threads[0].port);
EXPECT_EQ(0, threads[0].suspend_count);
}
class TestThreadPool {
public:
struct ThreadExpectation {
mach_vm_address_t stack_address;
int suspend_count;
};
TestThreadPool() : thread_infos_() {
}
// Resumes suspended threads, signals each threads exit semaphore asking it
// to exit, and joins each thread, blocking until they have all exited.
~TestThreadPool() {
for (ThreadInfo* thread_info : thread_infos_) {
thread_t thread_port = pthread_mach_thread_np(thread_info->pthread);
while (thread_info->suspend_count > 0) {
kern_return_t kr = thread_resume(thread_port);
EXPECT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "thread_resume");
--thread_info->suspend_count;
}
}
for (ThreadInfo* thread_info : thread_infos_) {
thread_info->exit_semaphore.Signal();
}
for (const ThreadInfo* thread_info : thread_infos_) {
int rv = pthread_join(thread_info->pthread, nullptr);
CHECK_EQ(0, rv);
}
}
// Starts |thread_count| threads and waits on each threads ready semaphore,
// so that when this function returns, all threads have been started and have
// all run to the point that theyve signalled that they are ready.
void StartThreads(size_t thread_count) {
ASSERT_TRUE(thread_infos_.empty());
for (size_t thread_index = 0; thread_index < thread_count; ++thread_index) {
ThreadInfo* thread_info = new ThreadInfo();
thread_infos_.push_back(thread_info);
int rv = pthread_create(&thread_info->pthread,
nullptr,
ThreadMain,
thread_info);
ASSERT_EQ(0, rv);
}
for (ThreadInfo* thread_info : thread_infos_) {
thread_info->ready_semaphore.Wait();
}
// If present, suspend the thread at indices 1 through 3 the same number of
// times as their index. This tests reporting of suspend counts.
for (size_t thread_index = 1;
thread_index < thread_infos_.size() && thread_index < 4;
++thread_index) {
thread_t thread_port =
pthread_mach_thread_np(thread_infos_[thread_index]->pthread);
for (size_t suspend_count = 0;
suspend_count < thread_index;
++suspend_count) {
kern_return_t kr = thread_suspend(thread_port);
EXPECT_EQ(KERN_SUCCESS, kr) << MachErrorMessage(kr, "thread_suspend");
if (kr == KERN_SUCCESS) {
++thread_infos_[thread_index]->suspend_count;
}
}
}
}
uint64_t GetThreadInfo(size_t thread_index,
ThreadExpectation* expectation) {
CHECK_LT(thread_index, thread_infos_.size());
const ThreadInfo* thread_info = thread_infos_[thread_index];
expectation->stack_address = thread_info->stack_address;
expectation->suspend_count = thread_info->suspend_count;
return PthreadToThreadID(thread_info->pthread);
}
private:
struct ThreadInfo {
ThreadInfo()
: pthread(nullptr),
stack_address(0),
ready_semaphore(0),
exit_semaphore(0),
suspend_count(0) {
}
~ThreadInfo() {}
// The threads ID, set at the time the thread is created.
pthread_t pthread;
// An address somewhere within the threads stack. The thread sets this in
// its ThreadMain().
mach_vm_address_t stack_address;
// The worker thread signals ready_semaphore to indicate that its done
// setting up its ThreadInfo structure. The main thread waits on this
// semaphore before using any data that the worker thread is responsible for
// setting.
Semaphore ready_semaphore;
// The worker thread waits on exit_semaphore to determine when its safe to
// exit. The main thread signals exit_semaphore when it no longer needs the
// worker thread.
Semaphore exit_semaphore;
// The threads suspend count.
int suspend_count;
};
static void* ThreadMain(void* argument) {
ThreadInfo* thread_info = static_cast<ThreadInfo*>(argument);
thread_info->stack_address =
reinterpret_cast<mach_vm_address_t>(&thread_info);
thread_info->ready_semaphore.Signal();
thread_info->exit_semaphore.Wait();
// Check this here after everythings known to be synchronized, otherwise
// theres a race between the parent thread storing this threads pthread_t
// in thread_info_pthread and this thread starting and attempting to access
// it.
CHECK_EQ(pthread_self(), thread_info->pthread);
return nullptr;
}
// This is a PointerVector because the address of a ThreadInfo object is
// passed to each threads ThreadMain(), so they cannot move around in memory.
PointerVector<ThreadInfo> thread_infos_;
DISALLOW_COPY_AND_ASSIGN(TestThreadPool);
};
using ThreadMap = std::map<uint64_t, TestThreadPool::ThreadExpectation>;
// Verifies that all of the threads in |threads|, obtained from ProcessReader,
// agree with the expectation in |thread_map|. If |tolerate_extra_threads| is
// true, |threads| is allowed to contain threads that are not listed in
// |thread_map|. This is useful when testing situations where code outside of
// the tests control (such as system libraries) may start threads, or may have
// started threads prior to a tests execution.
void ExpectSeveralThreads(ThreadMap* thread_map,
const std::vector<ProcessReader::Thread>& threads,
const bool tolerate_extra_threads) {
if (tolerate_extra_threads) {
ASSERT_GE(threads.size(), thread_map->size());
} else {
ASSERT_EQ(thread_map->size(), threads.size());
}
for (size_t thread_index = 0; thread_index < threads.size(); ++thread_index) {
const ProcessReader::Thread& thread = threads[thread_index];
mach_vm_address_t thread_stack_region_end =
thread.stack_region_address + thread.stack_region_size;
const auto& iterator = thread_map->find(thread.id);
if (!tolerate_extra_threads) {
// Make sure that the thread is in the expectation map.
ASSERT_NE(thread_map->end(), iterator);
}
if (iterator != thread_map->end()) {
EXPECT_GE(iterator->second.stack_address, thread.stack_region_address);
EXPECT_LT(iterator->second.stack_address, thread_stack_region_end);
EXPECT_EQ(iterator->second.suspend_count, thread.suspend_count);
// Remove the thread from the expectation map since its already been
// found. This makes it easy to check for duplicate thread IDs, and makes
// it easy to check that all expected threads were found.
thread_map->erase(iterator);
}
// Make sure that this threads ID, stack region, and port dont conflict
// with any other threads. Each thread should have a unique value for its
// ID and port, and each should have its own stack that doesnt touch any
// other threads stack.
for (size_t other_thread_index = 0;
other_thread_index < threads.size();
++other_thread_index) {
if (thread_index == other_thread_index) {
continue;
}
const ProcessReader::Thread& other_thread = threads[other_thread_index];
EXPECT_NE(thread.id, other_thread.id);
EXPECT_NE(thread.port, other_thread.port);
mach_vm_address_t other_thread_stack_region_end =
other_thread.stack_region_address + other_thread.stack_region_size;
EXPECT_FALSE(
thread.stack_region_address >= other_thread.stack_region_address &&
thread.stack_region_address < other_thread_stack_region_end);
EXPECT_FALSE(
thread_stack_region_end > other_thread.stack_region_address &&
thread_stack_region_end <= other_thread_stack_region_end);
}
}
// Make sure that each expected thread was found.
EXPECT_TRUE(thread_map->empty());
}
TEST(ProcessReader, SelfSeveralThreads) {
// Set up the ProcessReader here, before any other threads are running. This
// tests that the threads it returns are lazily initialized as a snapshot of
// the threads at the time of the first call to Threads(), and not at the
// time the ProcessReader was created or initialized.
ProcessReader process_reader;
ASSERT_TRUE(process_reader.Initialize(mach_task_self()));
TestThreadPool thread_pool;
const size_t kChildThreads = 16;
ASSERT_NO_FATAL_FAILURE(thread_pool.StartThreads(kChildThreads));
// Build a map of all expected threads, keyed by each threads ID. The values
// are addresses that should lie somewhere within each threads stack.
ThreadMap thread_map;
const uint64_t self_thread_id = PthreadToThreadID(pthread_self());
TestThreadPool::ThreadExpectation expectation;
expectation.stack_address = reinterpret_cast<mach_vm_address_t>(&thread_map);
expectation.suspend_count = 0;
thread_map[self_thread_id] = expectation;
for (size_t thread_index = 0; thread_index < kChildThreads; ++thread_index) {
uint64_t thread_id = thread_pool.GetThreadInfo(thread_index, &expectation);
// There cant be any duplicate thread IDs.
EXPECT_EQ(0u, thread_map.count(thread_id));
thread_map[thread_id] = expectation;
}
const std::vector<ProcessReader::Thread>& threads = process_reader.Threads();
// Other tests that have run previously may have resulted in the creation of
// threads that still exist, so pass true for |tolerate_extra_threads|.
ExpectSeveralThreads(&thread_map, threads, true);
// When testing in-process, verify that when this thread shows up in the
// vector, it has the expected thread port, and that this thread port only
// shows up once.
thread_t thread_self = MachThreadSelf();
bool found_thread_self = false;
for (const ProcessReader::Thread& thread : threads) {
if (thread.port == thread_self) {
EXPECT_FALSE(found_thread_self);
found_thread_self = true;
EXPECT_EQ(self_thread_id, thread.id);
}
}
EXPECT_TRUE(found_thread_self);
}
class ProcessReaderThreadedChild final : public MachMultiprocess {
public:
explicit ProcessReaderThreadedChild(size_t thread_count)
: MachMultiprocess(),
thread_count_(thread_count) {
}
~ProcessReaderThreadedChild() {}
private:
void MachMultiprocessParent() override {
ProcessReader process_reader;
ASSERT_TRUE(process_reader.Initialize(ChildTask()));
FileHandle read_handle = ReadPipeHandle();
// Build a map of all expected threads, keyed by each threads ID, and with
// addresses that should lie somewhere within each threads stack as values.
// These IDs and addresses all come from the child process via the pipe.
ThreadMap thread_map;
for (size_t thread_index = 0;
thread_index < thread_count_ + 1;
++thread_index) {
uint64_t thread_id;
CheckedReadFile(read_handle, &thread_id, sizeof(thread_id));
TestThreadPool::ThreadExpectation expectation;
CheckedReadFile(read_handle,
&expectation.stack_address,
sizeof(expectation.stack_address));
CheckedReadFile(read_handle,
&expectation.suspend_count,
sizeof(expectation.suspend_count));
// There cant be any duplicate thread IDs.
EXPECT_EQ(0u, thread_map.count(thread_id));
thread_map[thread_id] = expectation;
}
const std::vector<ProcessReader::Thread>& threads = process_reader.Threads();
// The child shouldnt have any threads other than its main thread and the
// ones it created in its pool, so pass false for |tolerate_extra_threads|.
ExpectSeveralThreads(&thread_map, threads, false);
}
void MachMultiprocessChild() override {
TestThreadPool thread_pool;
ASSERT_NO_FATAL_FAILURE(thread_pool.StartThreads(thread_count_));
FileHandle write_handle = WritePipeHandle();
// This thread isnt part of the thread pool, but the parent will be able
// to inspect it. Write an entry for it.
uint64_t thread_id = PthreadToThreadID(pthread_self());
CheckedWriteFile(write_handle, &thread_id, sizeof(thread_id));
TestThreadPool::ThreadExpectation expectation;
expectation.stack_address = reinterpret_cast<mach_vm_address_t>(&thread_id);
expectation.suspend_count = 0;
CheckedWriteFile(write_handle,
&expectation.stack_address,
sizeof(expectation.stack_address));
CheckedWriteFile(write_handle,
&expectation.suspend_count,
sizeof(expectation.suspend_count));
// Write an entry for everything in the thread pool.
for (size_t thread_index = 0;
thread_index < thread_count_;
++thread_index) {
uint64_t thread_id =
thread_pool.GetThreadInfo(thread_index, &expectation);
CheckedWriteFile(write_handle, &thread_id, sizeof(thread_id));
CheckedWriteFile(write_handle,
&expectation.stack_address,
sizeof(expectation.stack_address));
CheckedWriteFile(write_handle,
&expectation.suspend_count,
sizeof(expectation.suspend_count));
}
// Wait for the parent to signal that its OK to exit by closing its end of
// the pipe.
CheckedReadFileAtEOF(ReadPipeHandle());
}
size_t thread_count_;
DISALLOW_COPY_AND_ASSIGN(ProcessReaderThreadedChild);
};
TEST(ProcessReader, ChildOneThread) {
// The main thread plus zero child threads equals one thread.
const size_t kChildThreads = 0;
ProcessReaderThreadedChild process_reader_threaded_child(kChildThreads);
process_reader_threaded_child.Run();
}
TEST(ProcessReader, ChildSeveralThreads) {
const size_t kChildThreads = 64;
ProcessReaderThreadedChild process_reader_threaded_child(kChildThreads);
process_reader_threaded_child.Run();
}
// cl_kernels images (OpenCL kernels) are weird. Theyre not ld output and dont
// exist as files on disk. On OS X 10.10 and 10.11, their Mach-O structure isnt
// perfect. They show up loaded into many executables, so these quirks should be
// tolerated.
//
// Create an object of this class to ensure that at least one cl_kernels image
// is present in a process, to be able to test that all of the process-reading
// machinery tolerates them. On systems where cl_kernels modules have known
// quirks, the image that an object of this class produces will also have those
// quirks.
//
// https://openradar.appspot.com/20239912
class ScopedOpenCLNoOpKernel {
public:
ScopedOpenCLNoOpKernel()
: context_(nullptr),
program_(nullptr),
kernel_(nullptr) {
}
~ScopedOpenCLNoOpKernel() {
if (kernel_) {
cl_int rv = clReleaseKernel(kernel_);
EXPECT_EQ(CL_SUCCESS, rv) << "clReleaseKernel";
}
if (program_) {
cl_int rv = clReleaseProgram(program_);
EXPECT_EQ(CL_SUCCESS, rv) << "clReleaseProgram";
}
if (context_) {
cl_int rv = clReleaseContext(context_);
EXPECT_EQ(CL_SUCCESS, rv) << "clReleaseContext";
}
}
void SetUp() {
cl_platform_id platform_id;
cl_int rv = clGetPlatformIDs(1, &platform_id, nullptr);
ASSERT_EQ(CL_SUCCESS, rv) << "clGetPlatformIDs";
// Use CL_DEVICE_TYPE_CPU to ensure that the kernel would execute on the
// CPU. This is the only device type that a cl_kernels image will be created
// for.
cl_device_id device_id;
rv =
clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_CPU, 1, &device_id, nullptr);
ASSERT_EQ(CL_SUCCESS, rv) << "clGetDeviceIDs";
context_ = clCreateContext(nullptr, 1, &device_id, nullptr, nullptr, &rv);
ASSERT_EQ(CL_SUCCESS, rv) << "clCreateContext";
// The goal of the program in |sources| is to produce a cl_kernels image
// that doesnt strictly conform to Mach-O expectations. On OS X 10.10,
// cl_kernels modules show up with an __LD,__compact_unwind section, showing
// up in the __TEXT segment. MachOImageSegmentReader would normally reject
// modules for this problem, but a special exception is made when this
// occurs in cl_kernels images. This portion of the test is aimed at making
// sure that this exception works correctly.
//
// A true no-op program doesnt actually produce unwind data, so there would
// be no errant __LD,__compact_unwind section on 10.10, and the test
// wouldnt be complete. This simple no-op, which calls a built-in function,
// does produce unwind data provided optimization is disabled.
// "-cl-opt-disable" is given to clBuildProgram() below.
const char* sources[] = {
"__kernel void NoOp(void) {barrier(CLK_LOCAL_MEM_FENCE);}",
};
const size_t source_lengths[] = {
strlen(sources[0]),
};
static_assert(arraysize(sources) == arraysize(source_lengths),
"arrays must be parallel");
program_ = clCreateProgramWithSource(
context_, arraysize(sources), sources, source_lengths, &rv);
ASSERT_EQ(CL_SUCCESS, rv) << "clCreateProgramWithSource";
rv = clBuildProgram(
program_, 1, &device_id, "-cl-opt-disable", nullptr, nullptr);
ASSERT_EQ(CL_SUCCESS, rv) << "clBuildProgram";
kernel_ = clCreateKernel(program_, "NoOp", &rv);
ASSERT_EQ(CL_SUCCESS, rv) << "clCreateKernel";
}
private:
cl_context context_;
cl_program program_;
cl_kernel kernel_;
DISALLOW_COPY_AND_ASSIGN(ScopedOpenCLNoOpKernel);
};
// Although Mac OS X 10.6 has OpenCL and can compile and execute OpenCL code,
// OpenCL kernels that run on the CPU do not result in cl_kernels images
// appearing on that OS version.
bool ExpectCLKernels() {
#if MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_7
return true;
#else
return MacOSXMinorVersion() >= 7;
#endif
}
TEST(ProcessReader, SelfModules) {
ScopedOpenCLNoOpKernel ensure_cl_kernels;
ASSERT_NO_FATAL_FAILURE(ensure_cl_kernels.SetUp());
ProcessReader process_reader;
ASSERT_TRUE(process_reader.Initialize(mach_task_self()));
uint32_t dyld_image_count = _dyld_image_count();
const std::vector<ProcessReader::Module>& modules = process_reader.Modules();
// There needs to be at least an entry for the main executable, for a dylib,
// and for dyld.
ASSERT_GE(modules.size(), 3u);
// dyld_image_count doesnt include an entry for dyld itself, but |modules|
// does.
ASSERT_EQ(dyld_image_count + 1, modules.size());
bool found_cl_kernels = false;
for (uint32_t index = 0; index < dyld_image_count; ++index) {
SCOPED_TRACE(base::StringPrintf(
"index %u, name %s", index, modules[index].name.c_str()));
const char* dyld_image_name = _dyld_get_image_name(index);
EXPECT_EQ(dyld_image_name, modules[index].name);
ASSERT_TRUE(modules[index].reader);
EXPECT_EQ(
reinterpret_cast<mach_vm_address_t>(_dyld_get_image_header(index)),
modules[index].reader->Address());
if (index == 0) {
// dyld didnt load the main executable, so it couldnt record its
// timestamp, and it is reported as 0.
EXPECT_EQ(0, modules[index].timestamp);
} else if (modules[index].reader->FileType() == MH_BUNDLE &&
modules[index].name == "cl_kernels") {
// cl_kernels doesnt exist as a file.
EXPECT_EQ(0, modules[index].timestamp);
found_cl_kernels = true;
} else {
// Hope that the module didnt change on disk.
struct stat stat_buf;
int rv = stat(dyld_image_name, &stat_buf);
EXPECT_EQ(0, rv) << ErrnoMessage("stat");
if (rv == 0) {
EXPECT_EQ(stat_buf.st_mtime, modules[index].timestamp);
}
}
}
EXPECT_EQ(ExpectCLKernels(), found_cl_kernels);
size_t index = modules.size() - 1;
EXPECT_EQ(kDyldPath, modules[index].name);
// dyld didnt load itself either, so it couldnt record its timestamp, and it
// is also reported as 0.
EXPECT_EQ(0, modules[index].timestamp);
const struct dyld_all_image_infos* dyld_image_infos =
_dyld_get_all_image_infos();
if (dyld_image_infos->version >= 2) {
ASSERT_TRUE(modules[index].reader);
EXPECT_EQ(
reinterpret_cast<mach_vm_address_t>(
dyld_image_infos->dyldImageLoadAddress),
modules[index].reader->Address());
}
}
class ProcessReaderModulesChild final : public MachMultiprocess {
public:
ProcessReaderModulesChild() : MachMultiprocess() {}
~ProcessReaderModulesChild() {}
private:
void MachMultiprocessParent() override {
ProcessReader process_reader;
ASSERT_TRUE(process_reader.Initialize(ChildTask()));
const std::vector<ProcessReader::Module>& modules =
process_reader.Modules();
// There needs to be at least an entry for the main executable, for a dylib,
// and for dyld.
ASSERT_GE(modules.size(), 3u);
FileHandle read_handle = ReadPipeHandle();
uint32_t expect_modules;
CheckedReadFile(read_handle, &expect_modules, sizeof(expect_modules));
ASSERT_EQ(expect_modules, modules.size());
bool found_cl_kernels = false;
for (size_t index = 0; index < modules.size(); ++index) {
SCOPED_TRACE(base::StringPrintf(
"index %zu, name %s", index, modules[index].name.c_str()));
uint32_t expect_name_length;
CheckedReadFile(
read_handle, &expect_name_length, sizeof(expect_name_length));
// The NUL terminator is not read.
std::string expect_name(expect_name_length, '\0');
CheckedReadFile(read_handle, &expect_name[0], expect_name_length);
EXPECT_EQ(expect_name, modules[index].name);
mach_vm_address_t expect_address;
CheckedReadFile(read_handle, &expect_address, sizeof(expect_address));
ASSERT_TRUE(modules[index].reader);
EXPECT_EQ(expect_address, modules[index].reader->Address());
if (index == 0 || index == modules.size() - 1) {
// dyld didnt load the main executable or itself, so it couldnt record
// these timestamps, and they are reported as 0.
EXPECT_EQ(0, modules[index].timestamp);
} else if (modules[index].reader->FileType() == MH_BUNDLE &&
modules[index].name == "cl_kernels") {
// cl_kernels doesnt exist as a file.
EXPECT_EQ(0, modules[index].timestamp);
found_cl_kernels = true;
} else {
// Hope that the module didnt change on disk.
struct stat stat_buf;
int rv = stat(expect_name.c_str(), &stat_buf);
EXPECT_EQ(0, rv) << ErrnoMessage("stat");
if (rv == 0) {
EXPECT_EQ(stat_buf.st_mtime, modules[index].timestamp);
}
}
}
EXPECT_EQ(ExpectCLKernels(), found_cl_kernels);
}
void MachMultiprocessChild() override {
FileHandle write_handle = WritePipeHandle();
uint32_t dyld_image_count = _dyld_image_count();
const struct dyld_all_image_infos* dyld_image_infos =
_dyld_get_all_image_infos();
uint32_t write_image_count = dyld_image_count;
if (dyld_image_infos->version >= 2) {
// dyld_image_count doesnt include an entry for dyld itself, but one will
// be written.
++write_image_count;
}
CheckedWriteFile(
write_handle, &write_image_count, sizeof(write_image_count));
for (size_t index = 0; index < write_image_count; ++index) {
const char* dyld_image_name;
mach_vm_address_t dyld_image_address;
if (index < dyld_image_count) {
dyld_image_name = _dyld_get_image_name(index);
dyld_image_address =
reinterpret_cast<mach_vm_address_t>(_dyld_get_image_header(index));
} else {
dyld_image_name = kDyldPath;
dyld_image_address = reinterpret_cast<mach_vm_address_t>(
dyld_image_infos->dyldImageLoadAddress);
}
uint32_t dyld_image_name_length = strlen(dyld_image_name);
CheckedWriteFile(write_handle,
&dyld_image_name_length,
sizeof(dyld_image_name_length));
// The NUL terminator is not written.
CheckedWriteFile(write_handle, dyld_image_name, dyld_image_name_length);
CheckedWriteFile(
write_handle, &dyld_image_address, sizeof(dyld_image_address));
}
// Wait for the parent to signal that its OK to exit by closing its end of
// the pipe.
CheckedReadFileAtEOF(ReadPipeHandle());
}
DISALLOW_COPY_AND_ASSIGN(ProcessReaderModulesChild);
};
TEST(ProcessReader, ChildModules) {
ScopedOpenCLNoOpKernel ensure_cl_kernels;
ASSERT_NO_FATAL_FAILURE(ensure_cl_kernels.SetUp());
ProcessReaderModulesChild process_reader_modules_child;
process_reader_modules_child.Run();
}
} // namespace
} // namespace test
} // namespace crashpad