crashpad/util/linux/thread_info.cc

339 lines
9.2 KiB
C++
Raw Normal View History

// Copyright 2017 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "util/linux/thread_info.h"
#include <linux/elf.h>
#include <string.h>
#include <sys/ptrace.h>
#include <sys/uio.h>
#include "base/logging.h"
#include "util/misc/from_pointer_cast.h"
#if defined(ARCH_CPU_X86_FAMILY)
#include <asm/ldt.h>
#endif
namespace crashpad {
namespace {
#if defined(ARCH_CPU_X86_FAMILY)
template <typename Destination>
bool GetRegisterSet(pid_t tid, int set, Destination* dest) {
iovec iov;
iov.iov_base = dest;
iov.iov_len = sizeof(*dest);
if (ptrace(PTRACE_GETREGSET, tid, reinterpret_cast<void*>(set), &iov) != 0) {
PLOG(ERROR) << "ptrace";
return false;
}
if (iov.iov_len != sizeof(*dest)) {
LOG(ERROR) << "Unexpected registers size";
return false;
}
return true;
}
bool GetFloatingPointRegisters32(pid_t tid, FloatContext* context) {
return GetRegisterSet(tid, NT_PRXFPREG, &context->f32.fxsave);
}
bool GetFloatingPointRegisters64(pid_t tid, FloatContext* context) {
return GetRegisterSet(tid, NT_PRFPREG, &context->f64.fxsave);
}
#elif defined(ARCH_CPU_ARM_FAMILY)
#if defined(ARCH_CPU_ARMEL)
// PTRACE_GETREGSET, introduced in Linux 2.6.34 (2225a122ae26), requires kernel
// support enabled by HAVE_ARCH_TRACEHOOK. This has been set for x86 (including
// x86_64) since Linux 2.6.28 (99bbc4b1e677a), but for ARM only since
// Linux 3.5.0 (0693bf68148c4). Older Linux kernels support PTRACE_GETREGS,
// PTRACE_GETFPREGS, and PTRACE_GETVFPREGS instead, which don't allow checking
// the size of data copied.
//
// Fortunately, 64-bit ARM support only appeared in Linux 3.7.0, so if
// PTRACE_GETREGSET fails on ARM with EIO, indicating that the request is not
// supported, the kernel must be old enough that 64-bit ARM isnt supported
// either.
//
// TODO(mark): Once helpers to interpret the kernel version are available, add
// a DCHECK to ensure that the kernel is older than 3.5.
bool GetGeneralPurposeRegistersLegacy(pid_t tid, ThreadContext* context) {
if (ptrace(PTRACE_GETREGS, tid, nullptr, &context->t32) != 0) {
PLOG(ERROR) << "ptrace";
return false;
}
return true;
}
bool GetFloatingPointRegistersLegacy(pid_t tid, FloatContext* context) {
if (ptrace(PTRACE_GETFPREGS, tid, nullptr, &context->f32.fpregs) != 0) {
PLOG(ERROR) << "ptrace";
return false;
}
context->f32.have_fpregs = true;
if (ptrace(PTRACE_GETVFPREGS, tid, nullptr, &context->f32.vfp) != 0) {
switch (errno) {
case EINVAL:
// These registers are optional on 32-bit ARM cpus
break;
default:
PLOG(ERROR) << "ptrace";
return false;
}
} else {
context->f32.have_vfp = true;
}
return true;
}
#endif // ARCH_CPU_ARMEL
// Normally, the Linux kernel will copy out register sets according to the size
// of the struct that contains them. Tracing a 32-bit ARM process running in
// compatibility mode on a 64-bit ARM cpu will only copy data for the number of
// registers times the size of the register, which won't include any possible
// trailing padding in the struct. These are the sizes of the register data, not
// including any possible padding.
constexpr size_t kArmVfpSize = 32 * 8 + 4;
// Target is 32-bit
bool GetFloatingPointRegisters32(pid_t tid, FloatContext* context) {
context->f32.have_fpregs = false;
context->f32.have_vfp = false;
iovec iov;
iov.iov_base = &context->f32.fpregs;
iov.iov_len = sizeof(context->f32.fpregs);
if (ptrace(
PTRACE_GETREGSET, tid, reinterpret_cast<void*>(NT_PRFPREG), &iov) !=
0) {
switch (errno) {
#if defined(ARCH_CPU_ARMEL)
case EIO:
return GetFloatingPointRegistersLegacy(tid, context);
#endif // ARCH_CPU_ARMEL
case EINVAL:
// A 32-bit process running on a 64-bit CPU doesn't have this register
// set. It should have a VFP register set instead.
break;
default:
PLOG(ERROR) << "ptrace";
return false;
}
} else {
if (iov.iov_len != sizeof(context->f32.fpregs)) {
LOG(ERROR) << "Unexpected registers size";
return false;
}
context->f32.have_fpregs = true;
}
iov.iov_base = &context->f32.vfp;
iov.iov_len = sizeof(context->f32.vfp);
if (ptrace(
PTRACE_GETREGSET, tid, reinterpret_cast<void*>(NT_ARM_VFP), &iov) !=
0) {
switch (errno) {
case EINVAL:
// VFP may not be present on 32-bit ARM cpus.
break;
default:
PLOG(ERROR) << "ptrace";
return false;
}
} else {
if (iov.iov_len != kArmVfpSize && iov.iov_len != sizeof(context->f32.vfp)) {
LOG(ERROR) << "Unexpected registers size";
return false;
}
context->f32.have_vfp = true;
}
if (!(context->f32.have_fpregs || context->f32.have_vfp)) {
LOG(ERROR) << "Unable to collect registers";
return false;
}
return true;
}
// Target is 64-bit
bool GetFloatingPointRegisters64(pid_t tid, FloatContext* context) {
iovec iov;
iov.iov_base = context;
iov.iov_len = sizeof(*context);
if (ptrace(
PTRACE_GETREGSET, tid, reinterpret_cast<void*>(NT_PRFPREG), &iov) !=
0) {
PLOG(ERROR) << "ptrace";
return false;
}
if (iov.iov_len != sizeof(context->f64)) {
LOG(ERROR) << "Unexpected registers size";
return false;
}
return true;
}
#else
#error Port.
#endif // ARCH_CPU_X86_FAMILY
} // namespace
ThreadContext::ThreadContext() {
memset(this, 0, sizeof(*this));
}
ThreadContext::~ThreadContext() {}
FloatContext::FloatContext() {
memset(this, 0, sizeof(*this));
}
FloatContext::~FloatContext() {}
ThreadInfo::ThreadInfo()
: context_(), attachment_(), tid_(-1), initialized_(), is_64_bit_(false) {}
ThreadInfo::~ThreadInfo() {}
bool ThreadInfo::Initialize(pid_t tid) {
INITIALIZATION_STATE_SET_INITIALIZING(initialized_);
if (!attachment_.ResetAttach(tid)) {
return false;
}
tid_ = tid;
size_t length = GetGeneralPurposeRegistersAndLength(&context_);
if (length == sizeof(context_.t64)) {
is_64_bit_ = true;
} else if (length == sizeof(context_.t32)) {
is_64_bit_ = false;
} else {
LOG(ERROR) << "Unexpected registers size";
return false;
}
INITIALIZATION_STATE_SET_VALID(initialized_);
return true;
}
bool ThreadInfo::Is64Bit() {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
return is_64_bit_;
}
void ThreadInfo::GetGeneralPurposeRegisters(ThreadContext* context) {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
*context = context_;
}
size_t ThreadInfo::GetGeneralPurposeRegistersAndLength(ThreadContext* context) {
iovec iov;
iov.iov_base = context;
iov.iov_len = sizeof(*context);
if (ptrace(
PTRACE_GETREGSET, tid_, reinterpret_cast<void*>(NT_PRSTATUS), &iov) !=
0) {
switch (errno) {
#if defined(ARCH_CPU_ARMEL)
case EIO:
if (GetGeneralPurposeRegistersLegacy(tid_, context)) {
return sizeof(context->t32);
}
#endif // ARCH_CPU_ARMEL
default:
PLOG(ERROR) << "ptrace";
return 0;
}
}
return iov.iov_len;
}
bool ThreadInfo::GetFloatingPointRegisters(FloatContext* context) {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
return is_64_bit_ ? GetFloatingPointRegisters64(tid_, context)
: GetFloatingPointRegisters32(tid_, context);
}
bool ThreadInfo::GetThreadArea(LinuxVMAddress* address) {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
#if defined(ARCH_CPU_X86_FAMILY)
if (is_64_bit_) {
*address = context_.t64.fs_base;
return true;
}
user_desc desc;
iovec iov;
iov.iov_base = &desc;
iov.iov_len = sizeof(desc);
*address = 0;
if (ptrace(
PTRACE_GETREGSET, tid_, reinterpret_cast<void*>(NT_386_TLS), &iov) !=
0) {
PLOG(ERROR) << "ptrace";
return false;
}
*address = desc.base_addr;
return true;
#elif defined(ARCH_CPU_ARM_FAMILY)
if (is_64_bit_) {
iovec iov;
iov.iov_base = address;
iov.iov_len = sizeof(*address);
if (ptrace(PTRACE_GETREGSET,
tid_,
reinterpret_cast<void*>(NT_ARM_TLS),
&iov) != 0) {
PLOG(ERROR) << "ptrace";
return false;
}
if (iov.iov_len != 8) {
LOG(ERROR) << "address size mismatch";
return false;
}
return true;
}
#if defined(ARCH_CPU_ARMEL)
void* result;
if (ptrace(PTRACE_GET_THREAD_AREA, tid_, nullptr, &result) != 0) {
PLOG(ERROR) << "ptrace";
return false;
}
*address = FromPointerCast<LinuxVMAddress>(result);
return true;
#else
// TODO(jperaza): it doesn't look like there is a way for a 64-bit ARM process
// to get the thread area for a 32-bit ARM process with ptrace.
LOG(WARNING) << "64-bit ARM cannot trace TLS area for a 32-bit process";
return false;
#endif // ARCH_CPU_ARMEL
#else
#error Port.
#endif // ARCH_CPU_X86_FAMILY
}
} // namespace crashpad