2014-08-01 12:48:28 -04:00
|
|
|
|
// Copyright 2014 The Crashpad Authors. All rights reserved.
|
|
|
|
|
//
|
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
|
//
|
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
//
|
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
|
|
#include "minidump/minidump_writable.h"
|
|
|
|
|
|
2014-10-23 18:47:27 -04:00
|
|
|
|
#include <stdint.h>
|
|
|
|
|
|
|
|
|
|
#include <limits>
|
|
|
|
|
|
2014-08-01 12:48:28 -04:00
|
|
|
|
#include "base/logging.h"
|
2014-10-23 18:47:27 -04:00
|
|
|
|
#include "util/file/file_writer.h"
|
2014-08-01 12:48:28 -04:00
|
|
|
|
#include "util/numeric/safe_assignment.h"
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
|
|
const size_t kMaximumAlignment = 16;
|
|
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
namespace crashpad {
|
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
|
|
bool MinidumpWritable::WriteEverything(FileWriterInterface* file_writer) {
|
|
|
|
|
DCHECK_EQ(state_, kStateMutable);
|
|
|
|
|
|
|
|
|
|
if (!Freeze()) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
DCHECK_EQ(state_, kStateFrozen);
|
|
|
|
|
|
|
|
|
|
off_t offset = 0;
|
|
|
|
|
std::vector<MinidumpWritable*> write_sequence;
|
|
|
|
|
size_t size = WillWriteAtOffset(kPhaseEarly, &offset, &write_sequence);
|
|
|
|
|
if (size == kInvalidSize) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
offset += size;
|
|
|
|
|
if (WillWriteAtOffset(kPhaseLate, &offset, &write_sequence) == kInvalidSize) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
DCHECK_EQ(state_, kStateWritable);
|
|
|
|
|
DCHECK_EQ(write_sequence.front(), this);
|
|
|
|
|
|
|
|
|
|
for (MinidumpWritable* writable : write_sequence) {
|
|
|
|
|
if (!writable->WritePaddingAndObject(file_writer)) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
DCHECK_EQ(state_, kStateWritten);
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MinidumpWritable::RegisterRVA(RVA* rva) {
|
|
|
|
|
DCHECK_LE(state_, kStateFrozen);
|
|
|
|
|
|
|
|
|
|
registered_rvas_.push_back(rva);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void MinidumpWritable::RegisterLocationDescriptor(
|
|
|
|
|
MINIDUMP_LOCATION_DESCRIPTOR* location_descriptor) {
|
|
|
|
|
DCHECK_LE(state_, kStateFrozen);
|
|
|
|
|
|
|
|
|
|
registered_location_descriptors_.push_back(location_descriptor);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const size_t MinidumpWritable::kInvalidSize =
|
|
|
|
|
std::numeric_limits<size_t>::max();
|
|
|
|
|
|
|
|
|
|
MinidumpWritable::MinidumpWritable()
|
|
|
|
|
: registered_rvas_(),
|
|
|
|
|
registered_location_descriptors_(),
|
|
|
|
|
leading_pad_bytes_(0),
|
|
|
|
|
state_(kStateMutable) {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MinidumpWritable::~MinidumpWritable() {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool MinidumpWritable::Freeze() {
|
|
|
|
|
DCHECK_EQ(state_, kStateMutable);
|
|
|
|
|
state_ = kStateFrozen;
|
|
|
|
|
|
|
|
|
|
std::vector<MinidumpWritable*> children = Children();
|
|
|
|
|
for (MinidumpWritable* child : children) {
|
|
|
|
|
if (!child->Freeze()) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
size_t MinidumpWritable::Alignment() {
|
|
|
|
|
DCHECK_GE(state_, kStateFrozen);
|
|
|
|
|
|
|
|
|
|
return 4;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::vector<MinidumpWritable*> MinidumpWritable::Children() {
|
|
|
|
|
DCHECK_GE(state_, kStateFrozen);
|
|
|
|
|
|
|
|
|
|
return std::vector<MinidumpWritable*>();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MinidumpWritable::Phase MinidumpWritable::WritePhase() {
|
|
|
|
|
return kPhaseEarly;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
size_t MinidumpWritable::WillWriteAtOffset(
|
|
|
|
|
Phase phase,
|
|
|
|
|
off_t* offset,
|
|
|
|
|
std::vector<MinidumpWritable*>* write_sequence) {
|
|
|
|
|
off_t local_offset = *offset;
|
|
|
|
|
CHECK_GE(local_offset, 0);
|
|
|
|
|
|
|
|
|
|
size_t leading_pad_bytes_this_phase;
|
|
|
|
|
size_t size;
|
|
|
|
|
if (phase == WritePhase()) {
|
|
|
|
|
DCHECK_EQ(state_, kStateFrozen);
|
|
|
|
|
|
|
|
|
|
// Add this object to the sequence of MinidumpWritable objects to be
|
|
|
|
|
// written.
|
|
|
|
|
write_sequence->push_back(this);
|
|
|
|
|
|
|
|
|
|
size = SizeOfObject();
|
|
|
|
|
|
|
|
|
|
if (size > 0) {
|
|
|
|
|
// Honor this object’s request to be aligned to a specific byte boundary.
|
|
|
|
|
// Once the alignment is corrected, this object knows exactly what file
|
|
|
|
|
// offset it will be written at.
|
|
|
|
|
size_t alignment = Alignment();
|
|
|
|
|
CHECK_LE(alignment, kMaximumAlignment);
|
|
|
|
|
|
|
|
|
|
leading_pad_bytes_this_phase =
|
|
|
|
|
(alignment - (local_offset % alignment)) % alignment;
|
|
|
|
|
local_offset += leading_pad_bytes_this_phase;
|
|
|
|
|
*offset = local_offset;
|
|
|
|
|
} else {
|
|
|
|
|
// If the object is size 0, alignment is of no concern.
|
|
|
|
|
leading_pad_bytes_this_phase = 0;
|
|
|
|
|
}
|
|
|
|
|
leading_pad_bytes_ = leading_pad_bytes_this_phase;
|
|
|
|
|
|
|
|
|
|
// Now that the file offset that this object will be written at is known,
|
|
|
|
|
// let the subclass implementation know in case it’s interested.
|
|
|
|
|
if (!WillWriteAtOffsetImpl(local_offset)) {
|
|
|
|
|
return kInvalidSize;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Populate the RVA fields in other objects that have registered to point to
|
|
|
|
|
// this one. Typically, a parent object will have registered to point to its
|
|
|
|
|
// children, but this can also occur where no parent-child relationship
|
|
|
|
|
// exists.
|
|
|
|
|
if (!registered_rvas_.empty() ||
|
|
|
|
|
!registered_location_descriptors_.empty()) {
|
|
|
|
|
RVA local_rva;
|
|
|
|
|
if (!AssignIfInRange(&local_rva, local_offset)) {
|
|
|
|
|
LOG(ERROR) << "offset " << local_offset << " out of range";
|
|
|
|
|
return kInvalidSize;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (RVA* rva : registered_rvas_) {
|
|
|
|
|
*rva = local_rva;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!registered_location_descriptors_.empty()) {
|
|
|
|
|
typeof(registered_location_descriptors_[0]->DataSize) local_size;
|
|
|
|
|
if (!AssignIfInRange(&local_size, size)) {
|
|
|
|
|
LOG(ERROR) << "size " << size << " out of range";
|
|
|
|
|
return kInvalidSize;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
for (MINIDUMP_LOCATION_DESCRIPTOR* location_descriptor :
|
|
|
|
|
registered_location_descriptors_) {
|
|
|
|
|
location_descriptor->DataSize = local_size;
|
|
|
|
|
location_descriptor->Rva = local_rva;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// This object is now considered writable. However, if it contains RVA or
|
|
|
|
|
// MINIDUMP_LOCATION_DESCRIPTOR fields, they may not be fully updated yet,
|
|
|
|
|
// because it’s the repsonsibility of these fields’ pointees to update them.
|
|
|
|
|
// Once WillWriteAtOffset has completed running for both phases on an entire
|
|
|
|
|
// tree, and the entire tree has moved into kStateFrozen, all RVA and
|
|
|
|
|
// MINIDUMP_LOCATION_DESCRIPTOR fields within that tree will be populated.
|
|
|
|
|
state_ = kStateWritable;
|
|
|
|
|
} else {
|
|
|
|
|
if (phase == kPhaseEarly) {
|
|
|
|
|
DCHECK_EQ(state_, kStateFrozen);
|
|
|
|
|
} else {
|
|
|
|
|
DCHECK_EQ(state_, kStateWritable);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
size = 0;
|
|
|
|
|
leading_pad_bytes_this_phase = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Loop over children regardless of whether this object itself will write
|
|
|
|
|
// during this phase. An object’s children are not required to be written
|
|
|
|
|
// during the same phase as their parent.
|
|
|
|
|
std::vector<MinidumpWritable*> children = Children();
|
|
|
|
|
for (MinidumpWritable* child : children) {
|
|
|
|
|
// Use “auto” here because it’s impossible to know whether size_t (size) or
|
|
|
|
|
// off_t (local_offset) is the wider type, and thus what type the result of
|
|
|
|
|
// adding these two variables will have.
|
|
|
|
|
auto unaligned_child_offset = local_offset + size;
|
|
|
|
|
off_t child_offset;
|
|
|
|
|
if (!AssignIfInRange(&child_offset, unaligned_child_offset)) {
|
|
|
|
|
LOG(ERROR) << "offset " << unaligned_child_offset << " out of range";
|
|
|
|
|
return kInvalidSize;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
size_t child_size =
|
|
|
|
|
child->WillWriteAtOffset(phase, &child_offset, write_sequence);
|
|
|
|
|
if (child_size == kInvalidSize) {
|
|
|
|
|
return kInvalidSize;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
size += child_size;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return leading_pad_bytes_this_phase + size;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool MinidumpWritable::WillWriteAtOffsetImpl(off_t offset) {
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool MinidumpWritable::WritePaddingAndObject(FileWriterInterface* file_writer) {
|
|
|
|
|
DCHECK_EQ(state_, kStateWritable);
|
|
|
|
|
|
|
|
|
|
// The number of elements in kZeroes must be at least one less than the
|
|
|
|
|
// maximum Alignment() ever encountered.
|
|
|
|
|
const uint8_t kZeroes[kMaximumAlignment - 1] = {};
|
|
|
|
|
DCHECK_LE(leading_pad_bytes_, arraysize(kZeroes));
|
|
|
|
|
|
|
|
|
|
if (leading_pad_bytes_) {
|
|
|
|
|
if (!file_writer->Write(&kZeroes, leading_pad_bytes_)) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!WriteObject(file_writer)) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
state_ = kStateWritten;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace internal
|
|
|
|
|
} // namespace crashpad
|