crashpad/client/capture_context_mac_test.cc

159 lines
6.1 KiB
C++
Raw Normal View History

// Copyright 2014 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "client/capture_context_mac.h"
#include <mach/mach.h>
#include <stdint.h>
#include <algorithm>
#include "build/build_config.h"
#include "gtest/gtest.h"
#include "util/misc/address_sanitizer.h"
#include "util/misc/implicit_cast.h"
namespace crashpad {
namespace test {
namespace {
// If the context structure has fields that tell whether its valid, such as
// magic numbers or size fields, sanity-checks those fields for validity with
// fatal gtest assertions. For other fields, where its possible to reason about
// their validity based solely on their contents, sanity-checks via nonfatal
// gtest assertions.
void SanityCheckContext(const NativeCPUContext& context) {
#if defined(ARCH_CPU_X86)
ASSERT_EQ(implicit_cast<thread_state_flavor_t>(context.tsh.flavor),
implicit_cast<thread_state_flavor_t>(x86_THREAD_STATE32));
ASSERT_EQ(implicit_cast<uint32_t>(context.tsh.count),
implicit_cast<uint32_t>(x86_THREAD_STATE32_COUNT));
#elif defined(ARCH_CPU_X86_64)
ASSERT_EQ(implicit_cast<thread_state_flavor_t>(context.tsh.flavor),
implicit_cast<thread_state_flavor_t>(x86_THREAD_STATE64));
ASSERT_EQ(implicit_cast<uint32_t>(context.tsh.count),
implicit_cast<uint32_t>(x86_THREAD_STATE64_COUNT));
#endif
#if defined(ARCH_CPU_X86_FAMILY)
// The segment registers are only capable of storing 16-bit quantities, but
// the context structure provides native integer-width fields for them. Ensure
// that the high bits are all clear.
//
// Many bit positions in the flags register are reserved and will always read
// a known value. Most reserved bits are always 0, but bit 1 is always 1.
// Check that the reserved bits are all set to their expected values. Note
// that the set of reserved bits may be relaxed over time with newer CPUs, and
// that this test may need to be changed to reflect these developments. The
// current set of reserved bits are 1, 3, 5, 15, and 22 and higher. See Intel
// Software Developers Manual, Volume 1: Basic Architecture (253665-051),
// 3.4.3 “EFLAGS Register”, and AMD Architecture Programmers Manual, Volume
// 2: System Programming (24593-3.24), 3.1.6 “RFLAGS Register”.
#if defined(ARCH_CPU_X86)
test: Use (actual, [un]expected) in gtest {ASSERT,EXPECT}_{EQ,NE} gtest used to require (expected, actual) ordering for arguments to EXPECT_EQ and ASSERT_EQ, and in failed test assertions would identify each side as “expected” or “actual.” Tests in Crashpad adhered to this traditional ordering. After a gtest change in February 2016, it is now agnostic with respect to the order of these arguments. This change mechanically updates all uses of these macros to (actual, expected) by reversing them. This provides consistency with our use of the logging CHECK_EQ and DCHECK_EQ macros, and makes for better readability by ordinary native speakers. The rough (but working!) conversion tool is https://chromium-review.googlesource.com/c/466727/1/rewrite_expectassert_eq.py, and “git cl format” cleaned up its output. EXPECT_NE and ASSERT_NE never had a preferred ordering. gtest never made a judgment that one side or the other needed to provide an “unexpected” value. Consequently, some code used (unexpected, actual) while other code used (actual, unexpected). For consistency with the new EXPECT_EQ and ASSERT_EQ usage, as well as consistency with CHECK_NE and DCHECK_NE, this change also updates these use sites to (actual, unexpected) where one side can be called “unexpected” as, for example, std::string::npos can be. Unfortunately, this portion was a manual conversion. References: https://github.com/google/googletest/blob/master/googletest/docs/Primer.md#binary-comparison https://github.com/google/googletest/commit/77d6b173380332b1c1bc540532641f410ec82d65 https://github.com/google/googletest/pull/713 Change-Id: I978fef7c94183b8b1ef63f12f5ab4d6693626be3 Reviewed-on: https://chromium-review.googlesource.com/466727 Reviewed-by: Scott Graham <scottmg@chromium.org>
2017-04-04 00:35:21 -04:00
EXPECT_EQ(context.uts.ts32.__cs & ~0xffff, 0u);
EXPECT_EQ(context.uts.ts32.__ds & ~0xffff, 0u);
EXPECT_EQ(context.uts.ts32.__es & ~0xffff, 0u);
EXPECT_EQ(context.uts.ts32.__fs & ~0xffff, 0u);
EXPECT_EQ(context.uts.ts32.__gs & ~0xffff, 0u);
EXPECT_EQ(context.uts.ts32.__ss & ~0xffff, 0u);
EXPECT_EQ(context.uts.ts32.__eflags & 0xffc0802a, 2u);
#elif defined(ARCH_CPU_X86_64)
test: Use (actual, [un]expected) in gtest {ASSERT,EXPECT}_{EQ,NE} gtest used to require (expected, actual) ordering for arguments to EXPECT_EQ and ASSERT_EQ, and in failed test assertions would identify each side as “expected” or “actual.” Tests in Crashpad adhered to this traditional ordering. After a gtest change in February 2016, it is now agnostic with respect to the order of these arguments. This change mechanically updates all uses of these macros to (actual, expected) by reversing them. This provides consistency with our use of the logging CHECK_EQ and DCHECK_EQ macros, and makes for better readability by ordinary native speakers. The rough (but working!) conversion tool is https://chromium-review.googlesource.com/c/466727/1/rewrite_expectassert_eq.py, and “git cl format” cleaned up its output. EXPECT_NE and ASSERT_NE never had a preferred ordering. gtest never made a judgment that one side or the other needed to provide an “unexpected” value. Consequently, some code used (unexpected, actual) while other code used (actual, unexpected). For consistency with the new EXPECT_EQ and ASSERT_EQ usage, as well as consistency with CHECK_NE and DCHECK_NE, this change also updates these use sites to (actual, unexpected) where one side can be called “unexpected” as, for example, std::string::npos can be. Unfortunately, this portion was a manual conversion. References: https://github.com/google/googletest/blob/master/googletest/docs/Primer.md#binary-comparison https://github.com/google/googletest/commit/77d6b173380332b1c1bc540532641f410ec82d65 https://github.com/google/googletest/pull/713 Change-Id: I978fef7c94183b8b1ef63f12f5ab4d6693626be3 Reviewed-on: https://chromium-review.googlesource.com/466727 Reviewed-by: Scott Graham <scottmg@chromium.org>
2017-04-04 00:35:21 -04:00
EXPECT_EQ(context.uts.ts64.__cs & ~UINT64_C(0xffff), 0u);
EXPECT_EQ(context.uts.ts64.__fs & ~UINT64_C(0xffff), 0u);
EXPECT_EQ(context.uts.ts64.__gs & ~UINT64_C(0xffff), 0u);
EXPECT_EQ(context.uts.ts64.__rflags & UINT64_C(0xffffffffffc0802a), 2u);
#endif
#endif
}
// A CPU-independent function to return the program counter.
uintptr_t ProgramCounterFromContext(const NativeCPUContext& context) {
#if defined(ARCH_CPU_X86)
return context.uts.ts32.__eip;
#elif defined(ARCH_CPU_X86_64)
return context.uts.ts64.__rip;
#endif
}
// A CPU-independent function to return the stack pointer.
uintptr_t StackPointerFromContext(const NativeCPUContext& context) {
#if defined(ARCH_CPU_X86)
return context.uts.ts32.__esp;
#elif defined(ARCH_CPU_X86_64)
return context.uts.ts64.__rsp;
#endif
}
void TestCaptureContext() {
NativeCPUContext context_1;
CaptureContext(&context_1);
{
SCOPED_TRACE("context_1");
ASSERT_NO_FATAL_FAILURE(SanityCheckContext(context_1));
}
// The program counter reference value is this functions address. The
// captured program counter should be slightly greater than or equal to the
// reference program counter.
uintptr_t pc = ProgramCounterFromContext(context_1);
#if !defined(ADDRESS_SANITIZER)
// AddressSanitizer can cause enough code bloat that the “nearby” check would
// likely fail.
const uintptr_t kReferencePC =
reinterpret_cast<uintptr_t>(TestCaptureContext);
EXPECT_LT(pc - kReferencePC, 64u);
#endif // !defined(ADDRESS_SANITIZER)
// Declare sp and context_2 here because all local variables need to be
// declared before computing the stack pointer reference value, so that the
// reference value can be the lowest value possible.
uintptr_t sp;
NativeCPUContext context_2;
// The stack pointer reference value is the lowest address of a local variable
// in this function. The captured program counter will be slightly less than
// or equal to the reference stack pointer.
const uintptr_t kReferenceSP =
std::min(std::min(reinterpret_cast<uintptr_t>(&context_1),
reinterpret_cast<uintptr_t>(&context_2)),
std::min(reinterpret_cast<uintptr_t>(&pc),
reinterpret_cast<uintptr_t>(&sp)));
sp = StackPointerFromContext(context_1);
EXPECT_LT(kReferenceSP - sp, 512u);
// Capture the context again, expecting that the stack pointer stays the same
// and the program counter increases. Strictly speaking, theres no guarantee
// that these conditions will hold, although they do for known compilers even
// under typical optimization.
CaptureContext(&context_2);
{
SCOPED_TRACE("context_2");
ASSERT_NO_FATAL_FAILURE(SanityCheckContext(context_2));
}
test: Use (actual, [un]expected) in gtest {ASSERT,EXPECT}_{EQ,NE} gtest used to require (expected, actual) ordering for arguments to EXPECT_EQ and ASSERT_EQ, and in failed test assertions would identify each side as “expected” or “actual.” Tests in Crashpad adhered to this traditional ordering. After a gtest change in February 2016, it is now agnostic with respect to the order of these arguments. This change mechanically updates all uses of these macros to (actual, expected) by reversing them. This provides consistency with our use of the logging CHECK_EQ and DCHECK_EQ macros, and makes for better readability by ordinary native speakers. The rough (but working!) conversion tool is https://chromium-review.googlesource.com/c/466727/1/rewrite_expectassert_eq.py, and “git cl format” cleaned up its output. EXPECT_NE and ASSERT_NE never had a preferred ordering. gtest never made a judgment that one side or the other needed to provide an “unexpected” value. Consequently, some code used (unexpected, actual) while other code used (actual, unexpected). For consistency with the new EXPECT_EQ and ASSERT_EQ usage, as well as consistency with CHECK_NE and DCHECK_NE, this change also updates these use sites to (actual, unexpected) where one side can be called “unexpected” as, for example, std::string::npos can be. Unfortunately, this portion was a manual conversion. References: https://github.com/google/googletest/blob/master/googletest/docs/Primer.md#binary-comparison https://github.com/google/googletest/commit/77d6b173380332b1c1bc540532641f410ec82d65 https://github.com/google/googletest/pull/713 Change-Id: I978fef7c94183b8b1ef63f12f5ab4d6693626be3 Reviewed-on: https://chromium-review.googlesource.com/466727 Reviewed-by: Scott Graham <scottmg@chromium.org>
2017-04-04 00:35:21 -04:00
EXPECT_EQ(StackPointerFromContext(context_2), sp);
EXPECT_GT(ProgramCounterFromContext(context_2), pc);
}
TEST(CaptureContextMac, CaptureContext) {
ASSERT_NO_FATAL_FAILURE(TestCaptureContext());
}
} // namespace
} // namespace test
} // namespace crashpad