crashpad/util/process/process_memory_test.cc

604 lines
20 KiB
C++
Raw Normal View History

// Copyright 2017 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "util/process/process_memory.h"
#include <string.h>
#include <memory>
#include "base/memory/page_size.h"
#include "build/build_config.h"
#include "gtest/gtest.h"
#include "test/errors.h"
#include "test/multiprocess.h"
#include "test/multiprocess_exec.h"
#include "test/process_type.h"
#include "test/scoped_guarded_page.h"
#include "util/file/file_io.h"
#include "util/misc/from_pointer_cast.h"
#include "util/process/process_memory_native.h"
#if defined(OS_APPLE)
#include "test/mac/mach_multiprocess.h"
#endif // defined(OS_APPLE)
#if defined(OS_ANDROID) || defined(OS_LINUX) || defined(OS_CHROMEOS)
#include "test/linux/fake_ptrace_connection.h"
#include "util/linux/direct_ptrace_connection.h"
#endif // OS_ANDROID || OS_LINUX || OS_CHROMEOS
namespace crashpad {
namespace test {
namespace {
// On macOS the ProcessMemoryTests require accessing the child process' task
// port which requires root or a code signing entitlement. To account for this
// we implement an adaptor class that wraps MachMultiprocess on macOS, because
// it shares the child's task port, and makes it behave like MultiprocessExec.
#if defined(OS_APPLE)
class MultiprocessAdaptor : public MachMultiprocess {
public:
void SetChildTestMainFunction(const std::string& function_name) {
test_function_ = function_name;
}
ProcessType ChildProcess() { return ChildTask(); }
// Helpers to get I/O handles in the child process
static FileHandle OutputHandle() {
CHECK_NE(write_pipe_handle_, -1);
return write_pipe_handle_;
}
static FileHandle InputHandle() {
CHECK_NE(read_pipe_handle_, -1);
return read_pipe_handle_;
}
private:
virtual void Parent() = 0;
void MachMultiprocessParent() override { Parent(); }
void MachMultiprocessChild() override {
read_pipe_handle_ = ReadPipeHandle();
write_pipe_handle_ = WritePipeHandle();
internal::CheckedInvokeMultiprocessChild(test_function_);
}
std::string test_function_;
static FileHandle read_pipe_handle_;
static FileHandle write_pipe_handle_;
};
FileHandle MultiprocessAdaptor::read_pipe_handle_ = -1;
FileHandle MultiprocessAdaptor::write_pipe_handle_ = -1;
#else
class MultiprocessAdaptor : public MultiprocessExec {
public:
static FileHandle OutputHandle() {
return StdioFileHandle(StdioStream::kStandardOutput);
}
static FileHandle InputHandle() {
return StdioFileHandle(StdioStream::kStandardInput);
}
private:
virtual void Parent() = 0;
void MultiprocessParent() override { Parent(); }
};
#endif // defined(OS_APPLE)
void DoChildReadTestSetup(size_t* region_size,
std::unique_ptr<char[]>* region) {
*region_size = 4 * base::GetPageSize();
region->reset(new char[*region_size]);
for (size_t index = 0; index < *region_size; ++index) {
(*region)[index] = static_cast<char>(index % 256);
}
}
CRASHPAD_CHILD_TEST_MAIN(ReadTestChild) {
size_t region_size;
std::unique_ptr<char[]> region;
DoChildReadTestSetup(&region_size, &region);
FileHandle out = MultiprocessAdaptor::OutputHandle();
CheckedWriteFile(out, &region_size, sizeof(region_size));
VMAddress address = FromPointerCast<VMAddress>(region.get());
CheckedWriteFile(out, &address, sizeof(address));
CheckedReadFileAtEOF(MultiprocessAdaptor::InputHandle());
return 0;
}
class ReadTest : public MultiprocessAdaptor {
public:
ReadTest() : MultiprocessAdaptor() {
SetChildTestMainFunction("ReadTestChild");
}
void RunAgainstSelf() {
size_t region_size;
std::unique_ptr<char[]> region;
DoChildReadTestSetup(&region_size, &region);
DoTest(GetSelfProcess(),
region_size,
FromPointerCast<VMAddress>(region.get()));
}
void RunAgainstChild() { Run(); }
private:
void Parent() override {
size_t region_size;
VMAddress region;
ASSERT_TRUE(
ReadFileExactly(ReadPipeHandle(), &region_size, sizeof(region_size)));
ASSERT_TRUE(ReadFileExactly(ReadPipeHandle(), &region, sizeof(region)));
DoTest(ChildProcess(), region_size, region);
}
void DoTest(ProcessType process, size_t region_size, VMAddress address) {
#if defined(OS_ANDROID) || defined(OS_LINUX) || defined(OS_CHROMEOS)
FakePtraceConnection connection;
ASSERT_TRUE(connection.Initialize(process));
ProcessMemoryLinux memory(&connection);
#else
ProcessMemoryNative memory;
ASSERT_TRUE(memory.Initialize(process));
#endif // OS_ANDROID || OS_LINUX || OS_CHROMEOS
std::unique_ptr<char[]> result(new char[region_size]);
// Ensure that the entire region can be read.
ASSERT_TRUE(memory.Read(address, region_size, result.get()));
for (size_t i = 0; i < region_size; ++i) {
EXPECT_EQ(result[i], static_cast<char>(i % 256));
}
// Ensure that a read of length 0 succeeds and doesnt touch the result.
memset(result.get(), '\0', region_size);
ASSERT_TRUE(memory.Read(address, 0, result.get()));
for (size_t i = 0; i < region_size; ++i) {
test: Use (actual, [un]expected) in gtest {ASSERT,EXPECT}_{EQ,NE} gtest used to require (expected, actual) ordering for arguments to EXPECT_EQ and ASSERT_EQ, and in failed test assertions would identify each side as “expected” or “actual.” Tests in Crashpad adhered to this traditional ordering. After a gtest change in February 2016, it is now agnostic with respect to the order of these arguments. This change mechanically updates all uses of these macros to (actual, expected) by reversing them. This provides consistency with our use of the logging CHECK_EQ and DCHECK_EQ macros, and makes for better readability by ordinary native speakers. The rough (but working!) conversion tool is https://chromium-review.googlesource.com/c/466727/1/rewrite_expectassert_eq.py, and “git cl format” cleaned up its output. EXPECT_NE and ASSERT_NE never had a preferred ordering. gtest never made a judgment that one side or the other needed to provide an “unexpected” value. Consequently, some code used (unexpected, actual) while other code used (actual, unexpected). For consistency with the new EXPECT_EQ and ASSERT_EQ usage, as well as consistency with CHECK_NE and DCHECK_NE, this change also updates these use sites to (actual, unexpected) where one side can be called “unexpected” as, for example, std::string::npos can be. Unfortunately, this portion was a manual conversion. References: https://github.com/google/googletest/blob/master/googletest/docs/Primer.md#binary-comparison https://github.com/google/googletest/commit/77d6b173380332b1c1bc540532641f410ec82d65 https://github.com/google/googletest/pull/713 Change-Id: I978fef7c94183b8b1ef63f12f5ab4d6693626be3 Reviewed-on: https://chromium-review.googlesource.com/466727 Reviewed-by: Scott Graham <scottmg@chromium.org>
2017-04-04 00:35:21 -04:00
EXPECT_EQ(result[i], 0);
}
// Ensure that a read starting at an unaligned address works.
ASSERT_TRUE(memory.Read(address + 1, region_size - 1, result.get()));
for (size_t i = 0; i < region_size - 1; ++i) {
EXPECT_EQ(result[i], static_cast<char>((i + 1) % 256));
}
// Ensure that a read ending at an unaligned address works.
ASSERT_TRUE(memory.Read(address, region_size - 1, result.get()));
for (size_t i = 0; i < region_size - 1; ++i) {
EXPECT_EQ(result[i], static_cast<char>(i % 256));
}
// Ensure that a read starting and ending at unaligned addresses works.
ASSERT_TRUE(memory.Read(address + 1, region_size - 2, result.get()));
for (size_t i = 0; i < region_size - 2; ++i) {
EXPECT_EQ(result[i], static_cast<char>((i + 1) % 256));
}
// Ensure that a read of exactly one page works.
size_t page_size = base::GetPageSize();
ASSERT_GE(region_size, page_size + page_size);
ASSERT_TRUE(memory.Read(address + page_size, page_size, result.get()));
for (size_t i = 0; i < page_size; ++i) {
EXPECT_EQ(result[i], static_cast<char>((i + page_size) % 256));
}
// Ensure that reading exactly a single byte works.
result[1] = 'J';
ASSERT_TRUE(memory.Read(address + 2, 1, result.get()));
EXPECT_EQ(result[0], 2);
test: Use (actual, [un]expected) in gtest {ASSERT,EXPECT}_{EQ,NE} gtest used to require (expected, actual) ordering for arguments to EXPECT_EQ and ASSERT_EQ, and in failed test assertions would identify each side as “expected” or “actual.” Tests in Crashpad adhered to this traditional ordering. After a gtest change in February 2016, it is now agnostic with respect to the order of these arguments. This change mechanically updates all uses of these macros to (actual, expected) by reversing them. This provides consistency with our use of the logging CHECK_EQ and DCHECK_EQ macros, and makes for better readability by ordinary native speakers. The rough (but working!) conversion tool is https://chromium-review.googlesource.com/c/466727/1/rewrite_expectassert_eq.py, and “git cl format” cleaned up its output. EXPECT_NE and ASSERT_NE never had a preferred ordering. gtest never made a judgment that one side or the other needed to provide an “unexpected” value. Consequently, some code used (unexpected, actual) while other code used (actual, unexpected). For consistency with the new EXPECT_EQ and ASSERT_EQ usage, as well as consistency with CHECK_NE and DCHECK_NE, this change also updates these use sites to (actual, unexpected) where one side can be called “unexpected” as, for example, std::string::npos can be. Unfortunately, this portion was a manual conversion. References: https://github.com/google/googletest/blob/master/googletest/docs/Primer.md#binary-comparison https://github.com/google/googletest/commit/77d6b173380332b1c1bc540532641f410ec82d65 https://github.com/google/googletest/pull/713 Change-Id: I978fef7c94183b8b1ef63f12f5ab4d6693626be3 Reviewed-on: https://chromium-review.googlesource.com/466727 Reviewed-by: Scott Graham <scottmg@chromium.org>
2017-04-04 00:35:21 -04:00
EXPECT_EQ(result[1], 'J');
}
DISALLOW_COPY_AND_ASSIGN(ReadTest);
};
TEST(ProcessMemory, ReadSelf) {
ReadTest test;
test.RunAgainstSelf();
}
TEST(ProcessMemory, ReadChild) {
ReadTest test;
test.RunAgainstChild();
}
constexpr char kConstCharEmpty[] = "";
constexpr char kConstCharShort[] = "A short const char[]";
#define SHORT_LOCAL_STRING "A short local variable char[]"
std::string MakeLongString() {
std::string long_string;
const size_t kStringLongSize = 4 * base::GetPageSize();
for (size_t index = 0; index < kStringLongSize; ++index) {
long_string.push_back((index % 255) + 1);
}
EXPECT_EQ(long_string.size(), kStringLongSize);
return long_string;
}
void DoChildCStringReadTestSetup(const char** const_empty,
const char** const_short,
const char** local_empty,
const char** local_short,
std::string* long_string) {
*const_empty = kConstCharEmpty;
*const_short = kConstCharShort;
*local_empty = "";
*local_short = SHORT_LOCAL_STRING;
*long_string = MakeLongString();
}
CRASHPAD_CHILD_TEST_MAIN(ReadCStringTestChild) {
const char* const_empty;
const char* const_short;
const char* local_empty;
const char* local_short;
std::string long_string;
DoChildCStringReadTestSetup(
&const_empty, &const_short, &local_empty, &local_short, &long_string);
const auto write_address = [](const char* p) {
VMAddress address = FromPointerCast<VMAddress>(p);
CheckedWriteFile(
MultiprocessAdaptor::OutputHandle(), &address, sizeof(address));
};
write_address(const_empty);
write_address(const_short);
write_address(local_empty);
write_address(local_short);
write_address(long_string.c_str());
CheckedReadFileAtEOF(MultiprocessAdaptor::InputHandle());
return 0;
}
class ReadCStringTest : public MultiprocessAdaptor {
public:
ReadCStringTest(bool limit_size)
: MultiprocessAdaptor(), limit_size_(limit_size) {
SetChildTestMainFunction("ReadCStringTestChild");
}
void RunAgainstSelf() {
const char* const_empty;
const char* const_short;
const char* local_empty;
const char* local_short;
std::string long_string;
DoChildCStringReadTestSetup(
&const_empty, &const_short, &local_empty, &local_short, &long_string);
DoTest(GetSelfProcess(),
FromPointerCast<VMAddress>(const_empty),
FromPointerCast<VMAddress>(const_short),
FromPointerCast<VMAddress>(local_empty),
FromPointerCast<VMAddress>(local_short),
FromPointerCast<VMAddress>(long_string.c_str()));
}
void RunAgainstChild() { Run(); }
private:
void Parent() override {
#define DECLARE_AND_READ_ADDRESS(name) \
VMAddress name; \
ASSERT_TRUE(ReadFileExactly(ReadPipeHandle(), &name, sizeof(name)));
DECLARE_AND_READ_ADDRESS(const_empty_address);
DECLARE_AND_READ_ADDRESS(const_short_address);
DECLARE_AND_READ_ADDRESS(local_empty_address);
DECLARE_AND_READ_ADDRESS(local_short_address);
DECLARE_AND_READ_ADDRESS(long_string_address);
#undef DECLARE_AND_READ_ADDRESS
DoTest(ChildProcess(),
const_empty_address,
const_short_address,
local_empty_address,
local_short_address,
long_string_address);
}
void Compare(ProcessMemory& memory, VMAddress address, const char* str) {
std::string result;
if (limit_size_) {
ASSERT_TRUE(
memory.ReadCStringSizeLimited(address, strlen(str) + 1, &result));
EXPECT_EQ(result, str);
ASSERT_TRUE(
memory.ReadCStringSizeLimited(address, strlen(str) + 2, &result));
EXPECT_EQ(result, str);
EXPECT_FALSE(
memory.ReadCStringSizeLimited(address, strlen(str), &result));
} else {
ASSERT_TRUE(memory.ReadCString(address, &result));
EXPECT_EQ(result, str);
}
}
void DoTest(ProcessType process,
VMAddress const_empty_address,
VMAddress const_short_address,
VMAddress local_empty_address,
VMAddress local_short_address,
VMAddress long_string_address) {
#if defined(OS_ANDROID) || defined(OS_LINUX) || defined(OS_CHROMEOS)
FakePtraceConnection connection;
ASSERT_TRUE(connection.Initialize(process));
ProcessMemoryLinux memory(&connection);
#else
ProcessMemoryNative memory;
ASSERT_TRUE(memory.Initialize(process));
#endif // OS_ANDROID || OS_LINUX || OS_CHROMEOS
Compare(memory, const_empty_address, kConstCharEmpty);
Compare(memory, const_short_address, kConstCharShort);
Compare(memory, local_empty_address, "");
Compare(memory, local_short_address, SHORT_LOCAL_STRING);
std::string long_string_for_comparison = MakeLongString();
Compare(memory, long_string_address, long_string_for_comparison.c_str());
}
const bool limit_size_;
DISALLOW_COPY_AND_ASSIGN(ReadCStringTest);
};
TEST(ProcessMemory, ReadCStringSelf) {
ReadCStringTest test(/* limit_size= */ false);
test.RunAgainstSelf();
}
TEST(ProcessMemory, ReadCStringChild) {
ReadCStringTest test(/* limit_size= */ false);
test.RunAgainstChild();
}
TEST(ProcessMemory, ReadCStringSizeLimitedSelf) {
ReadCStringTest test(/* limit_size= */ true);
test.RunAgainstSelf();
}
TEST(ProcessMemory, ReadCStringSizeLimitedChild) {
ReadCStringTest test(/* limit_size= */ true);
test.RunAgainstChild();
}
void DoReadUnmappedChildMainSetup(void* page) {
char* region = reinterpret_cast<char*>(page);
for (size_t index = 0; index < base::GetPageSize(); ++index) {
region[index] = static_cast<char>(index % 256);
}
}
CRASHPAD_CHILD_TEST_MAIN(ReadUnmappedChildMain) {
ScopedGuardedPage pages;
VMAddress address = reinterpret_cast<VMAddress>(pages.Pointer());
DoReadUnmappedChildMainSetup(pages.Pointer());
FileHandle out = MultiprocessAdaptor::OutputHandle();
CheckedWriteFile(out, &address, sizeof(address));
CheckedReadFileAtEOF(MultiprocessAdaptor::InputHandle());
return 0;
}
// This test only supports running against a child process because
// ScopedGuardedPage is not thread-safe.
class ReadUnmappedTest : public MultiprocessAdaptor {
public:
ReadUnmappedTest() : MultiprocessAdaptor() {
SetChildTestMainFunction("ReadUnmappedChildMain");
}
void RunAgainstChild() { Run(); }
private:
void Parent() override {
VMAddress address = 0;
ASSERT_TRUE(ReadFileExactly(ReadPipeHandle(), &address, sizeof(address)));
DoTest(ChildProcess(), address);
}
void DoTest(ProcessType process, VMAddress address) {
#if defined(OS_ANDROID) || defined(OS_LINUX) || defined(OS_CHROMEOS)
DirectPtraceConnection connection;
ASSERT_TRUE(connection.Initialize(process));
ProcessMemoryLinux memory(&connection);
#else
ProcessMemoryNative memory;
ASSERT_TRUE(memory.Initialize(process));
#endif // OS_ANDROID || OS_LINUX || OS_CHROMEOS
VMAddress page_addr1 = address;
VMAddress page_addr2 = page_addr1 + base::GetPageSize();
std::unique_ptr<char[]> result(new char[base::GetPageSize() * 2]);
EXPECT_TRUE(memory.Read(page_addr1, base::GetPageSize(), result.get()));
EXPECT_TRUE(memory.Read(page_addr2 - 1, 1, result.get()));
EXPECT_FALSE(
memory.Read(page_addr1, base::GetPageSize() * 2, result.get()));
EXPECT_FALSE(memory.Read(page_addr2, base::GetPageSize(), result.get()));
EXPECT_FALSE(memory.Read(page_addr2 - 1, 2, result.get()));
}
DISALLOW_COPY_AND_ASSIGN(ReadUnmappedTest);
};
TEST(ProcessMemory, ReadUnmappedChild) {
ReadUnmappedTest test;
ASSERT_FALSE(testing::Test::HasFailure());
test.RunAgainstChild();
}
constexpr size_t kChildProcessStringLength = 10;
class StringDataInChildProcess {
public:
// This constructor only makes sense in the child process.
explicit StringDataInChildProcess(const char* cstring, bool valid)
: address_(FromPointerCast<VMAddress>(cstring)) {
if (valid) {
memcpy(expected_value_, cstring, kChildProcessStringLength + 1);
} else {
memset(expected_value_, 0xff, kChildProcessStringLength + 1);
}
}
void Write(FileHandle out) {
CheckedWriteFile(out, &address_, sizeof(address_));
CheckedWriteFile(out, &expected_value_, sizeof(expected_value_));
}
static StringDataInChildProcess Read(FileHandle in) {
StringDataInChildProcess str;
EXPECT_TRUE(ReadFileExactly(in, &str.address_, sizeof(str.address_)));
EXPECT_TRUE(
ReadFileExactly(in, &str.expected_value_, sizeof(str.expected_value_)));
return str;
}
VMAddress address() const { return address_; }
std::string expected_value() const { return expected_value_; }
private:
StringDataInChildProcess() : address_(0), expected_value_() {}
VMAddress address_;
char expected_value_[kChildProcessStringLength + 1];
};
void DoCStringUnmappedTestSetup(
void* page,
std::vector<StringDataInChildProcess>* strings) {
char* region = reinterpret_cast<char*>(page);
for (size_t index = 0; index < base::GetPageSize(); ++index) {
region[index] = 1 + index % 255;
}
// A string at the start of the mapped region
char* string1 = region;
string1[kChildProcessStringLength] = '\0';
// A string near the end of the mapped region
char* string2 = region + base::GetPageSize() - kChildProcessStringLength * 2;
string2[kChildProcessStringLength] = '\0';
// A string that crosses from the mapped into the unmapped region
char* string3 = region + base::GetPageSize() - kChildProcessStringLength + 1;
// A string entirely in the unmapped region
char* string4 = region + base::GetPageSize() + 10;
strings->push_back(StringDataInChildProcess(string1, true));
strings->push_back(StringDataInChildProcess(string2, true));
strings->push_back(StringDataInChildProcess(string3, false));
strings->push_back(StringDataInChildProcess(string4, false));
}
CRASHPAD_CHILD_TEST_MAIN(ReadCStringUnmappedChildMain) {
ScopedGuardedPage pages;
std::vector<StringDataInChildProcess> strings;
DoCStringUnmappedTestSetup(pages.Pointer(), &strings);
FileHandle out = MultiprocessAdaptor::OutputHandle();
strings[0].Write(out);
strings[1].Write(out);
strings[2].Write(out);
strings[3].Write(out);
CheckedReadFileAtEOF(MultiprocessAdaptor::InputHandle());
return 0;
}
// This test only supports running against a child process because
// ScopedGuardedPage is not thread-safe.
class ReadCStringUnmappedTest : public MultiprocessAdaptor {
public:
ReadCStringUnmappedTest(bool limit_size)
: MultiprocessAdaptor(), limit_size_(limit_size) {
SetChildTestMainFunction("ReadCStringUnmappedChildMain");
}
void RunAgainstChild() { Run(); }
private:
void Parent() override {
std::vector<StringDataInChildProcess> strings;
strings.push_back(StringDataInChildProcess::Read(ReadPipeHandle()));
strings.push_back(StringDataInChildProcess::Read(ReadPipeHandle()));
strings.push_back(StringDataInChildProcess::Read(ReadPipeHandle()));
strings.push_back(StringDataInChildProcess::Read(ReadPipeHandle()));
ASSERT_NO_FATAL_FAILURE(DoTest(ChildProcess(), strings));
}
void DoTest(ProcessType process,
const std::vector<StringDataInChildProcess>& strings) {
#if defined(OS_ANDROID) || defined(OS_LINUX) || defined(OS_CHROMEOS)
DirectPtraceConnection connection;
ASSERT_TRUE(connection.Initialize(process));
ProcessMemoryLinux memory(&connection);
#else
ProcessMemoryNative memory;
ASSERT_TRUE(memory.Initialize(process));
#endif // OS_ANDROID || OS_LINUX || OS_CHROMEOS
std::string result;
result.reserve(kChildProcessStringLength + 1);
if (limit_size_) {
ASSERT_TRUE(memory.ReadCStringSizeLimited(
strings[0].address(), kChildProcessStringLength + 1, &result));
EXPECT_EQ(result, strings[0].expected_value());
ASSERT_TRUE(memory.ReadCStringSizeLimited(
strings[1].address(), kChildProcessStringLength + 1, &result));
EXPECT_EQ(result, strings[1].expected_value());
EXPECT_FALSE(memory.ReadCStringSizeLimited(
strings[2].address(), kChildProcessStringLength + 1, &result));
EXPECT_FALSE(memory.ReadCStringSizeLimited(
strings[3].address(), kChildProcessStringLength + 1, &result));
} else {
ASSERT_TRUE(memory.ReadCString(strings[0].address(), &result));
EXPECT_EQ(result, strings[0].expected_value());
ASSERT_TRUE(memory.ReadCString(strings[1].address(), &result));
EXPECT_EQ(result, strings[1].expected_value());
EXPECT_FALSE(memory.ReadCString(strings[2].address(), &result));
EXPECT_FALSE(memory.ReadCString(strings[3].address(), &result));
}
}
const bool limit_size_;
DISALLOW_COPY_AND_ASSIGN(ReadCStringUnmappedTest);
};
TEST(ProcessMemory, ReadCStringUnmappedChild) {
ReadCStringUnmappedTest test(/* limit_size= */ false);
ASSERT_FALSE(testing::Test::HasFailure());
test.RunAgainstChild();
}
TEST(ProcessMemory, ReadCStringSizeLimitedUnmappedChild) {
ReadCStringUnmappedTest test(/* limit_size= */ true);
ASSERT_FALSE(testing::Test::HasFailure());
test.RunAgainstChild();
}
} // namespace
} // namespace test
} // namespace crashpad