crashpad/util/win/registration_protocol_win.cc

81 lines
2.5 KiB
C++
Raw Normal View History

win: Crash handler server This replaces the registration server, and adds dispatch to a delegate on crash requests. (As you are already aware) we went around in circles on trying to come up with a slightly-too-fancy threading design. All of them seemed to have problems when it comes to out of order events, and orderly shutdown, so I've gone back to something not-too-fancy. Two named pipe instances (that clients connect to) are created. These are used only for registration (which should take <1ms), so 2 should be sufficient to avoid any waits. When a client registers, we duplicate an event to it, which is used to signal when it wants a dump taken. The server registers threadpool waits on that event, and also on the process handle (which will be signalled when the client process exits). These requests (in particular the taking of the dump) are serviced on the threadpool, which avoids us needing to manage those threads, but still allows parallelism in taking dumps. On process termination, we use an IO Completion Port to post a message back to the main thread to request cleanup. This complexity is necessary so that we can unregister the threadpool waits without being on the threadpool, which we need to do synchronously so that we can be sure that no further callbacks will execute (and expect to have the client data around still). In a followup, I will readd support for DumpWithoutCrashing -- I don't think it will be too difficult now that we have an orderly way to clean up client records in the server. R=cpu@chromium.org, mark@chromium.org, jschuh@chromium.org BUG=crashpad:1,crashpad:45 Review URL: https://codereview.chromium.org/1301853002 .
2015-09-03 11:06:17 -07:00
// Copyright 2015 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "util/win/registration_protocol_win.h"
#include <windows.h>
#include "base/logging.h"
#include "util/win/scoped_handle.h"
win: Crash handler server This replaces the registration server, and adds dispatch to a delegate on crash requests. (As you are already aware) we went around in circles on trying to come up with a slightly-too-fancy threading design. All of them seemed to have problems when it comes to out of order events, and orderly shutdown, so I've gone back to something not-too-fancy. Two named pipe instances (that clients connect to) are created. These are used only for registration (which should take <1ms), so 2 should be sufficient to avoid any waits. When a client registers, we duplicate an event to it, which is used to signal when it wants a dump taken. The server registers threadpool waits on that event, and also on the process handle (which will be signalled when the client process exits). These requests (in particular the taking of the dump) are serviced on the threadpool, which avoids us needing to manage those threads, but still allows parallelism in taking dumps. On process termination, we use an IO Completion Port to post a message back to the main thread to request cleanup. This complexity is necessary so that we can unregister the threadpool waits without being on the threadpool, which we need to do synchronously so that we can be sure that no further callbacks will execute (and expect to have the client data around still). In a followup, I will readd support for DumpWithoutCrashing -- I don't think it will be too difficult now that we have an orderly way to clean up client records in the server. R=cpu@chromium.org, mark@chromium.org, jschuh@chromium.org BUG=crashpad:1,crashpad:45 Review URL: https://codereview.chromium.org/1301853002 .
2015-09-03 11:06:17 -07:00
namespace crashpad {
bool SendToCrashHandlerServer(const base::string16& pipe_name,
const crashpad::ClientToServerMessage& message,
crashpad::ServerToClientMessage* response) {
int tries = 0;
for (;;) {
ScopedFileHANDLE pipe(
CreateFile(pipe_name.c_str(),
GENERIC_READ | GENERIC_WRITE,
0,
nullptr,
OPEN_EXISTING,
SECURITY_SQOS_PRESENT | SECURITY_IDENTIFICATION,
nullptr));
if (!pipe.is_valid()) {
if (++tries == 5 || GetLastError() != ERROR_PIPE_BUSY) {
PLOG(ERROR) << "CreateFile";
return false;
}
if (!WaitNamedPipe(pipe_name.c_str(), 1000) &&
GetLastError() != ERROR_SEM_TIMEOUT) {
PLOG(ERROR) << "WaitNamedPipe";
return false;
}
win: Crash handler server This replaces the registration server, and adds dispatch to a delegate on crash requests. (As you are already aware) we went around in circles on trying to come up with a slightly-too-fancy threading design. All of them seemed to have problems when it comes to out of order events, and orderly shutdown, so I've gone back to something not-too-fancy. Two named pipe instances (that clients connect to) are created. These are used only for registration (which should take <1ms), so 2 should be sufficient to avoid any waits. When a client registers, we duplicate an event to it, which is used to signal when it wants a dump taken. The server registers threadpool waits on that event, and also on the process handle (which will be signalled when the client process exits). These requests (in particular the taking of the dump) are serviced on the threadpool, which avoids us needing to manage those threads, but still allows parallelism in taking dumps. On process termination, we use an IO Completion Port to post a message back to the main thread to request cleanup. This complexity is necessary so that we can unregister the threadpool waits without being on the threadpool, which we need to do synchronously so that we can be sure that no further callbacks will execute (and expect to have the client data around still). In a followup, I will readd support for DumpWithoutCrashing -- I don't think it will be too difficult now that we have an orderly way to clean up client records in the server. R=cpu@chromium.org, mark@chromium.org, jschuh@chromium.org BUG=crashpad:1,crashpad:45 Review URL: https://codereview.chromium.org/1301853002 .
2015-09-03 11:06:17 -07:00
continue;
}
win: Crash handler server This replaces the registration server, and adds dispatch to a delegate on crash requests. (As you are already aware) we went around in circles on trying to come up with a slightly-too-fancy threading design. All of them seemed to have problems when it comes to out of order events, and orderly shutdown, so I've gone back to something not-too-fancy. Two named pipe instances (that clients connect to) are created. These are used only for registration (which should take <1ms), so 2 should be sufficient to avoid any waits. When a client registers, we duplicate an event to it, which is used to signal when it wants a dump taken. The server registers threadpool waits on that event, and also on the process handle (which will be signalled when the client process exits). These requests (in particular the taking of the dump) are serviced on the threadpool, which avoids us needing to manage those threads, but still allows parallelism in taking dumps. On process termination, we use an IO Completion Port to post a message back to the main thread to request cleanup. This complexity is necessary so that we can unregister the threadpool waits without being on the threadpool, which we need to do synchronously so that we can be sure that no further callbacks will execute (and expect to have the client data around still). In a followup, I will readd support for DumpWithoutCrashing -- I don't think it will be too difficult now that we have an orderly way to clean up client records in the server. R=cpu@chromium.org, mark@chromium.org, jschuh@chromium.org BUG=crashpad:1,crashpad:45 Review URL: https://codereview.chromium.org/1301853002 .
2015-09-03 11:06:17 -07:00
DWORD mode = PIPE_READMODE_MESSAGE;
if (!SetNamedPipeHandleState(pipe.get(), &mode, nullptr, nullptr)) {
win: Crash handler server This replaces the registration server, and adds dispatch to a delegate on crash requests. (As you are already aware) we went around in circles on trying to come up with a slightly-too-fancy threading design. All of them seemed to have problems when it comes to out of order events, and orderly shutdown, so I've gone back to something not-too-fancy. Two named pipe instances (that clients connect to) are created. These are used only for registration (which should take <1ms), so 2 should be sufficient to avoid any waits. When a client registers, we duplicate an event to it, which is used to signal when it wants a dump taken. The server registers threadpool waits on that event, and also on the process handle (which will be signalled when the client process exits). These requests (in particular the taking of the dump) are serviced on the threadpool, which avoids us needing to manage those threads, but still allows parallelism in taking dumps. On process termination, we use an IO Completion Port to post a message back to the main thread to request cleanup. This complexity is necessary so that we can unregister the threadpool waits without being on the threadpool, which we need to do synchronously so that we can be sure that no further callbacks will execute (and expect to have the client data around still). In a followup, I will readd support for DumpWithoutCrashing -- I don't think it will be too difficult now that we have an orderly way to clean up client records in the server. R=cpu@chromium.org, mark@chromium.org, jschuh@chromium.org BUG=crashpad:1,crashpad:45 Review URL: https://codereview.chromium.org/1301853002 .
2015-09-03 11:06:17 -07:00
PLOG(ERROR) << "SetNamedPipeHandleState";
return false;
}
DWORD bytes_read = 0;
BOOL result = TransactNamedPipe(
pipe.get(),
win: Crash handler server This replaces the registration server, and adds dispatch to a delegate on crash requests. (As you are already aware) we went around in circles on trying to come up with a slightly-too-fancy threading design. All of them seemed to have problems when it comes to out of order events, and orderly shutdown, so I've gone back to something not-too-fancy. Two named pipe instances (that clients connect to) are created. These are used only for registration (which should take <1ms), so 2 should be sufficient to avoid any waits. When a client registers, we duplicate an event to it, which is used to signal when it wants a dump taken. The server registers threadpool waits on that event, and also on the process handle (which will be signalled when the client process exits). These requests (in particular the taking of the dump) are serviced on the threadpool, which avoids us needing to manage those threads, but still allows parallelism in taking dumps. On process termination, we use an IO Completion Port to post a message back to the main thread to request cleanup. This complexity is necessary so that we can unregister the threadpool waits without being on the threadpool, which we need to do synchronously so that we can be sure that no further callbacks will execute (and expect to have the client data around still). In a followup, I will readd support for DumpWithoutCrashing -- I don't think it will be too difficult now that we have an orderly way to clean up client records in the server. R=cpu@chromium.org, mark@chromium.org, jschuh@chromium.org BUG=crashpad:1,crashpad:45 Review URL: https://codereview.chromium.org/1301853002 .
2015-09-03 11:06:17 -07:00
// This is [in], but is incorrectly declared non-const.
const_cast<crashpad::ClientToServerMessage*>(&message),
sizeof(message),
response,
sizeof(*response),
&bytes_read,
nullptr);
if (!result) {
LOG(ERROR) << "TransactNamedPipe: expected " << sizeof(*response)
<< ", observed " << bytes_read;
win: Crash handler server This replaces the registration server, and adds dispatch to a delegate on crash requests. (As you are already aware) we went around in circles on trying to come up with a slightly-too-fancy threading design. All of them seemed to have problems when it comes to out of order events, and orderly shutdown, so I've gone back to something not-too-fancy. Two named pipe instances (that clients connect to) are created. These are used only for registration (which should take <1ms), so 2 should be sufficient to avoid any waits. When a client registers, we duplicate an event to it, which is used to signal when it wants a dump taken. The server registers threadpool waits on that event, and also on the process handle (which will be signalled when the client process exits). These requests (in particular the taking of the dump) are serviced on the threadpool, which avoids us needing to manage those threads, but still allows parallelism in taking dumps. On process termination, we use an IO Completion Port to post a message back to the main thread to request cleanup. This complexity is necessary so that we can unregister the threadpool waits without being on the threadpool, which we need to do synchronously so that we can be sure that no further callbacks will execute (and expect to have the client data around still). In a followup, I will readd support for DumpWithoutCrashing -- I don't think it will be too difficult now that we have an orderly way to clean up client records in the server. R=cpu@chromium.org, mark@chromium.org, jschuh@chromium.org BUG=crashpad:1,crashpad:45 Review URL: https://codereview.chromium.org/1301853002 .
2015-09-03 11:06:17 -07:00
return false;
}
if (bytes_read != sizeof(*response)) {
LOG(ERROR) << "TransactNamedPipe read incorrect number of bytes";
return false;
}
return true;
}
}
} // namespace crashpad