crashpad/snapshot/mac/process_reader.cc

725 lines
27 KiB
C++
Raw Normal View History

// Copyright 2014 The Crashpad Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "snapshot/mac/process_reader.h"
#include <AvailabilityMacros.h>
#include <mach/mach_vm.h>
#include <mach-o/loader.h>
#include <algorithm>
#include "base/logging.h"
#include "base/mac/mach_logging.h"
#include "base/mac/scoped_mach_port.h"
#include "base/mac/scoped_mach_vm.h"
#include "base/strings/stringprintf.h"
#include "snapshot/mac/mach_o_image_reader.h"
#include "snapshot/mac/process_types.h"
#include "util/misc/scoped_forbid_return.h"
namespace {
void MachTimeValueToTimeval(const time_value& mach, timeval* tv) {
tv->tv_sec = mach.seconds;
tv->tv_usec = mach.microseconds;
}
kern_return_t MachVMRegionRecurseDeepest(task_t task,
mach_vm_address_t* address,
mach_vm_size_t* size,
natural_t* depth,
vm_prot_t* protection,
unsigned int* user_tag) {
vm_region_submap_short_info_64 submap_info;
mach_msg_type_number_t count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64;
while (true) {
kern_return_t kr = mach_vm_region_recurse(
task,
address,
size,
depth,
reinterpret_cast<vm_region_recurse_info_t>(&submap_info),
&count);
if (kr != KERN_SUCCESS) {
return kr;
}
if (!submap_info.is_submap) {
*protection = submap_info.protection;
*user_tag = submap_info.user_tag;
return KERN_SUCCESS;
}
++*depth;
}
}
} // namespace
namespace crashpad {
ProcessReader::Thread::Thread()
: thread_context(),
float_context(),
debug_context(),
id(0),
stack_region_address(0),
stack_region_size(0),
thread_specific_data_address(0),
port(THREAD_NULL),
suspend_count(0),
priority(0) {
}
ProcessReader::Module::Module() : name(), reader(nullptr), timestamp(0) {
}
ProcessReader::Module::~Module() {
}
ProcessReader::ProcessReader()
: process_info_(),
threads_(),
modules_(),
module_readers_(),
task_memory_(),
task_(TASK_NULL),
initialized_(),
is_64_bit_(false),
initialized_threads_(false),
initialized_modules_(false) {
}
ProcessReader::~ProcessReader() {
for (const Thread& thread : threads_) {
kern_return_t kr = mach_port_deallocate(mach_task_self(), thread.port);
MACH_LOG_IF(ERROR, kr != KERN_SUCCESS, kr) << "mach_port_deallocate";
}
}
bool ProcessReader::Initialize(task_t task) {
INITIALIZATION_STATE_SET_INITIALIZING(initialized_);
if (!process_info_.InitializeFromTask(task)) {
return false;
}
if (!process_info_.Is64Bit(&is_64_bit_)) {
return false;
}
task_memory_.reset(new TaskMemory(task));
task_ = task;
INITIALIZATION_STATE_SET_VALID(initialized_);
return true;
}
void ProcessReader::StartTime(timeval* start_time) const {
bool rv = process_info_.StartTime(start_time);
DCHECK(rv);
}
bool ProcessReader::CPUTimes(timeval* user_time, timeval* system_time) const {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
// Calculate user and system time the same way the kernel does for
// getrusage(). See 10.9.2 xnu-2422.90.20/bsd/kern/kern_resource.c calcru().
timerclear(user_time);
timerclear(system_time);
// As of the 10.8 SDK, the preferred routine is MACH_TASK_BASIC_INFO.
// TASK_BASIC_INFO_64 is equivalent and works on earlier systems.
task_basic_info_64 task_basic_info;
mach_msg_type_number_t task_basic_info_count = TASK_BASIC_INFO_64_COUNT;
kern_return_t kr = task_info(task_,
TASK_BASIC_INFO_64,
reinterpret_cast<task_info_t>(&task_basic_info),
&task_basic_info_count);
if (kr != KERN_SUCCESS) {
MACH_LOG(WARNING, kr) << "task_info TASK_BASIC_INFO_64";
return false;
}
task_thread_times_info_data_t task_thread_times;
mach_msg_type_number_t task_thread_times_count = TASK_THREAD_TIMES_INFO_COUNT;
kr = task_info(task_,
TASK_THREAD_TIMES_INFO,
reinterpret_cast<task_info_t>(&task_thread_times),
&task_thread_times_count);
if (kr != KERN_SUCCESS) {
MACH_LOG(WARNING, kr) << "task_info TASK_THREAD_TIMES";
return false;
}
MachTimeValueToTimeval(task_basic_info.user_time, user_time);
MachTimeValueToTimeval(task_basic_info.system_time, system_time);
timeval thread_user_time;
MachTimeValueToTimeval(task_thread_times.user_time, &thread_user_time);
timeval thread_system_time;
MachTimeValueToTimeval(task_thread_times.system_time, &thread_system_time);
timeradd(user_time, &thread_user_time, user_time);
timeradd(system_time, &thread_system_time, system_time);
return true;
}
const std::vector<ProcessReader::Thread>& ProcessReader::Threads() {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
if (!initialized_threads_) {
InitializeThreads();
}
return threads_;
}
const std::vector<ProcessReader::Module>& ProcessReader::Modules() {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
if (!initialized_modules_) {
InitializeModules();
}
return modules_;
}
void ProcessReader::InitializeThreads() {
DCHECK(!initialized_threads_);
DCHECK(threads_.empty());
initialized_threads_ = true;
thread_act_array_t threads;
mach_msg_type_number_t thread_count = 0;
kern_return_t kr = task_threads(task_, &threads, &thread_count);
if (kr != KERN_SUCCESS) {
MACH_LOG(WARNING, kr) << "task_threads";
return;
}
// The send rights in the |threads| array wont have their send rights managed
// by anything until theyre added to |threads_| by the loop below. Any early
// return (or exception) that happens between here and the completion of the
// loop below will leak thread port send rights.
ScopedForbidReturn threads_need_owners;
base::mac::ScopedMachVM threads_vm(
reinterpret_cast<vm_address_t>(threads),
mach_vm_round_page(thread_count * sizeof(*threads)));
for (size_t index = 0; index < thread_count; ++index) {
Thread thread;
thread.port = threads[index];
#if defined(ARCH_CPU_X86_FAMILY)
const thread_state_flavor_t kThreadStateFlavor =
Is64Bit() ? x86_THREAD_STATE64 : x86_THREAD_STATE32;
mach_msg_type_number_t thread_state_count =
Is64Bit() ? x86_THREAD_STATE64_COUNT : x86_THREAD_STATE32_COUNT;
// TODO(mark): Use the AVX variants instead of the FLOAT variants?
const thread_state_flavor_t kFloatStateFlavor =
Is64Bit() ? x86_FLOAT_STATE64 : x86_FLOAT_STATE32;
mach_msg_type_number_t float_state_count =
Is64Bit() ? x86_FLOAT_STATE64_COUNT : x86_FLOAT_STATE32_COUNT;
const thread_state_flavor_t kDebugStateFlavor =
Is64Bit() ? x86_DEBUG_STATE64 : x86_DEBUG_STATE32;
mach_msg_type_number_t debug_state_count =
Is64Bit() ? x86_DEBUG_STATE64_COUNT : x86_DEBUG_STATE32_COUNT;
#endif
kr = thread_get_state(
thread.port,
kThreadStateFlavor,
reinterpret_cast<thread_state_t>(&thread.thread_context),
&thread_state_count);
if (kr != KERN_SUCCESS) {
MACH_LOG(ERROR, kr) << "thread_get_state(" << kThreadStateFlavor << ")";
continue;
}
kr = thread_get_state(
thread.port,
kFloatStateFlavor,
reinterpret_cast<thread_state_t>(&thread.float_context),
&float_state_count);
if (kr != KERN_SUCCESS) {
MACH_LOG(ERROR, kr) << "thread_get_state(" << kFloatStateFlavor << ")";
continue;
}
kr = thread_get_state(
thread.port,
kDebugStateFlavor,
reinterpret_cast<thread_state_t>(&thread.debug_context),
&debug_state_count);
if (kr != KERN_SUCCESS) {
MACH_LOG(ERROR, kr) << "thread_get_state(" << kDebugStateFlavor << ")";
continue;
}
thread_basic_info basic_info;
mach_msg_type_number_t count = THREAD_BASIC_INFO_COUNT;
kr = thread_info(thread.port,
THREAD_BASIC_INFO,
reinterpret_cast<thread_info_t>(&basic_info),
&count);
if (kr != KERN_SUCCESS) {
MACH_LOG(WARNING, kr) << "thread_info(THREAD_BASIC_INFO)";
} else {
thread.suspend_count = basic_info.suspend_count;
}
thread_identifier_info identifier_info;
count = THREAD_IDENTIFIER_INFO_COUNT;
kr = thread_info(thread.port,
THREAD_IDENTIFIER_INFO,
reinterpret_cast<thread_info_t>(&identifier_info),
&count);
if (kr != KERN_SUCCESS) {
MACH_LOG(WARNING, kr) << "thread_info(THREAD_IDENTIFIER_INFO)";
} else {
thread.id = identifier_info.thread_id;
// thread_identifier_info::thread_handle contains the base of the
// thread-specific data area, which on x86 and x86_64 is the threads base
// address of the %gs segment. 10.9.2 xnu-2422.90.20/osfmk/kern/thread.c
// thread_info_internal() gets the value from
// machine_thread::cthread_self, which is the same value used to set the
// %gs base in xnu-2422.90.20/osfmk/i386/pcb_native.c
// act_machine_switch_pcb().
//
// This address is the internal pthreads _pthread::tsd[], an array of
// void* values that can be indexed by pthread_key_t values.
thread.thread_specific_data_address = identifier_info.thread_handle;
}
thread_precedence_policy precedence;
count = THREAD_PRECEDENCE_POLICY_COUNT;
boolean_t get_default = FALSE;
kr = thread_policy_get(thread.port,
THREAD_PRECEDENCE_POLICY,
reinterpret_cast<thread_policy_t>(&precedence),
&count,
&get_default);
if (kr != KERN_SUCCESS) {
MACH_LOG(INFO, kr) << "thread_policy_get";
} else {
thread.priority = precedence.importance;
}
#if defined(ARCH_CPU_X86_FAMILY)
mach_vm_address_t stack_pointer = Is64Bit()
? thread.thread_context.t64.__rsp
: thread.thread_context.t32.__esp;
#endif
thread.stack_region_address =
CalculateStackRegion(stack_pointer, &thread.stack_region_size);
threads_.push_back(thread);
}
threads_need_owners.Disarm();
}
void ProcessReader::InitializeModules() {
DCHECK(!initialized_modules_);
DCHECK(modules_.empty());
initialized_modules_ = true;
task_dyld_info_data_t dyld_info;
mach_msg_type_number_t count = TASK_DYLD_INFO_COUNT;
kern_return_t kr = task_info(
task_, TASK_DYLD_INFO, reinterpret_cast<task_info_t>(&dyld_info), &count);
if (kr != KERN_SUCCESS) {
MACH_LOG(WARNING, kr) << "task_info";
return;
}
// TODO(mark): Deal with statically linked executables which dont use dyld.
// This may look for the module that matches the executable path in the same
// data set that vmmap uses.
#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_7
// The task_dyld_info_data_t struct grew in 10.7, adding the format field.
// Dont check this field if its not present, which can happen when either
// the SDK used at compile time or the kernel at run time are too old and
// dont know about it.
if (count >= TASK_DYLD_INFO_COUNT) {
const integer_t kExpectedFormat =
!Is64Bit() ? TASK_DYLD_ALL_IMAGE_INFO_32 : TASK_DYLD_ALL_IMAGE_INFO_64;
if (dyld_info.all_image_info_format != kExpectedFormat) {
LOG(WARNING) << "unexpected task_dyld_info_data_t::all_image_info_format "
<< dyld_info.all_image_info_format;
DCHECK_EQ(dyld_info.all_image_info_format, kExpectedFormat);
return;
}
}
#endif
process_types::dyld_all_image_infos all_image_infos;
if (!all_image_infos.Read(this, dyld_info.all_image_info_addr)) {
LOG(WARNING) << "could not read dyld_all_image_infos";
return;
}
if (all_image_infos.version < 1) {
LOG(WARNING) << "unexpected dyld_all_image_infos version "
<< all_image_infos.version;
return;
}
size_t expected_size =
process_types::dyld_all_image_infos::ExpectedSizeForVersion(
this, all_image_infos.version);
if (dyld_info.all_image_info_size < expected_size) {
LOG(WARNING) << "small dyld_all_image_infos size "
<< dyld_info.all_image_info_size << " < " << expected_size
<< " for version " << all_image_infos.version;
return;
}
// Note that all_image_infos.infoArrayCount may be 0 if a crash occurred while
// dyld was loading the executable. This can happen if a required dynamic
// library was not found. Similarly, all_image_infos.infoArray may be nullptr
// if a crash occurred while dyld was updating it.
//
// TODO(mark): It may be possible to recover from these situations by looking
// through memory mappings for Mach-O images.
//
// Continue along when this situation is detected, because even without any
// images in infoArray, dyldImageLoadAddress may be set, and it may be
// possible to recover some information from dyld.
if (all_image_infos.infoArrayCount == 0) {
LOG(WARNING) << "all_image_infos.infoArrayCount is zero";
} else if (!all_image_infos.infoArray) {
LOG(WARNING) << "all_image_infos.infoArray is nullptr";
}
std::vector<process_types::dyld_image_info> image_info_vector(
all_image_infos.infoArrayCount);
if (!process_types::dyld_image_info::ReadArrayInto(this,
all_image_infos.infoArray,
image_info_vector.size(),
&image_info_vector[0])) {
LOG(WARNING) << "could not read dyld_image_info array";
return;
}
size_t main_executable_count = 0;
bool found_dyld = false;
modules_.reserve(image_info_vector.size());
for (const process_types::dyld_image_info& image_info : image_info_vector) {
Module module;
module.timestamp = image_info.imageFileModDate;
if (!task_memory_->ReadCString(image_info.imageFilePath, &module.name)) {
LOG(WARNING) << "could not read dyld_image_info::imageFilePath";
// Proceed anyway with an empty module name.
}
std::unique_ptr<MachOImageReader> reader(new MachOImageReader());
if (!reader->Initialize(this, image_info.imageLoadAddress, module.name)) {
reader.reset();
}
module.reader = reader.get();
uint32_t file_type = reader ? reader->FileType() : 0;
module_readers_.push_back(reader.release());
modules_.push_back(module);
if (all_image_infos.version >= 2 && all_image_infos.dyldImageLoadAddress &&
image_info.imageLoadAddress == all_image_infos.dyldImageLoadAddress) {
found_dyld = true;
LOG(WARNING) << base::StringPrintf(
"found dylinker (%s) in dyld_all_image_infos::infoArray",
module.name.c_str());
LOG_IF(WARNING, file_type != MH_DYLINKER)
<< base::StringPrintf("dylinker (%s) has unexpected Mach-O type %d",
module.name.c_str(),
file_type);
}
if (file_type == MH_EXECUTE) {
// On Mac OS X 10.6, the main executable does not normally show up at
// index 0. This is because of how 10.6.8 dyld-132.13/src/dyld.cpp
// notifyGDB(), the function resposible for causing
// dyld_all_image_infos::infoArray to be updated, is called. It is
// registered to be called when all dependents of an image have been
// mapped (dyld_image_state_dependents_mapped), meaning that the main
// executable wont be added to the list until all of the libraries it
// depends on are, even though dyld begins looking at the main executable
// first. This changed in later versions of dyld, including those present
// in 10.7. 10.9.4 dyld-239.4/src/dyld.cpp updateAllImages() (renamed from
// notifyGDB()) is registered to be called when an image itself has been
// mapped (dyld_image_state_mapped), regardless of the libraries that it
// depends on.
//
// The interface requires that the main executable be first in the list,
// so swap it into the right position.
size_t index = modules_.size() - 1;
if (main_executable_count == 0) {
std::swap(modules_[0], modules_[index]);
} else {
LOG(WARNING) << base::StringPrintf(
"multiple MH_EXECUTE modules (%s, %s)",
modules_[0].name.c_str(),
modules_[index].name.c_str());
}
++main_executable_count;
}
}
LOG_IF(WARNING, main_executable_count == 0) << "no MH_EXECUTE modules";
// all_image_infos.infoArray doesnt include an entry for dyld, but dyld is
// loaded into the process address space as a module. Its load address is
// easily known given a sufficiently recent all_image_infos.version, but the
// timestamp and pathname are not given as they are for other modules.
//
// The timestamp is a lost cause, because the kernel doesnt record the
// timestamp of the dynamic linker at the time its loaded in the same way
// that dyld records the timestamps of other modules when theyre loaded. (The
// timestamp for the main executable is also not reported and appears as 0
// even when accessed via dyld APIs, because its loaded by the kernel, not by
// dyld.)
//
// The name can be determined, but its not as simple as hardcoding the
// default "/usr/lib/dyld" because an executable could have specified anything
// in its LC_LOAD_DYLINKER command.
if (!found_dyld && all_image_infos.version >= 2 &&
all_image_infos.dyldImageLoadAddress) {
Module module;
module.timestamp = 0;
// Examine the executables LC_LOAD_DYLINKER load command to find the path
// used to load dyld.
if (all_image_infos.infoArrayCount >= 1 && main_executable_count >= 1) {
module.name = modules_[0].reader->DylinkerName();
}
std::string module_name = !module.name.empty() ? module.name : "(dyld)";
std::unique_ptr<MachOImageReader> reader(new MachOImageReader());
if (!reader->Initialize(
this, all_image_infos.dyldImageLoadAddress, module_name)) {
reader.reset();
}
module.reader = reader.get();
uint32_t file_type = reader ? reader->FileType() : 0;
LOG_IF(WARNING, file_type != MH_DYLINKER)
<< base::StringPrintf("dylinker (%s) has unexpected Mach-O type %d",
module.name.c_str(),
file_type);
if (module.name.empty() && file_type == MH_DYLINKER) {
// Look inside dyld directly to find its preferred path.
module.name = reader->DylinkerName();
}
if (module.name.empty()) {
module.name = "(dyld)";
}
// dyld is loaded in the process even if its path cant be determined.
module_readers_.push_back(reader.release());
modules_.push_back(module);
}
}
mach_vm_address_t ProcessReader::CalculateStackRegion(
mach_vm_address_t stack_pointer,
mach_vm_size_t* stack_region_size) {
INITIALIZATION_STATE_DCHECK_VALID(initialized_);
// For pthreads, it may be possible to compute the stack region based on the
// internal _pthread::stackaddr and _pthread::stacksize. The _pthread struct
// for a thread can be located at TSD slot 0, or the known offsets of
// stackaddr and stacksize from the TSD area could be used.
mach_vm_address_t region_base = stack_pointer;
mach_vm_size_t region_size;
natural_t depth = 0;
vm_prot_t protection;
unsigned int user_tag;
kern_return_t kr = MachVMRegionRecurseDeepest(
task_, &region_base, &region_size, &depth, &protection, &user_tag);
if (kr != KERN_SUCCESS) {
MACH_LOG(INFO, kr) << "mach_vm_region_recurse";
*stack_region_size = 0;
return 0;
}
if (region_base > stack_pointer) {
// Theres nothing mapped at the stack pointers address. Something may have
// trashed the stack pointer. Note that this shouldnt happen for a normal
// stack guard region violation because the guard region is mapped but has
// VM_PROT_NONE protection.
*stack_region_size = 0;
return 0;
}
mach_vm_address_t start_address = stack_pointer;
if ((protection & VM_PROT_READ) == 0) {
// If the region isnt readable, the stack pointer probably points to the
// guard region. Dont include it as part of the stack, and dont include
// anything at any lower memory address. The code below may still possibly
// find the real stack region at a memory address higher than this region.
start_address = region_base + region_size;
} else {
// If the ABI requires a red zone, adjust the region to include it if
// possible.
LocateRedZone(&start_address, &region_base, &region_size, user_tag);
// Regardless of whether the ABI requires a red zone, capture up to
// kExtraCaptureSize additional bytes of stack, but only if present in the
// region that was already found.
const mach_vm_size_t kExtraCaptureSize = 128;
start_address = std::max(start_address >= kExtraCaptureSize
? start_address - kExtraCaptureSize
: start_address,
region_base);
// Align start_address to a 16-byte boundary, which can help readers by
// ensuring that data is aligned properly. This could page-align instead,
// but that might be wasteful.
const mach_vm_size_t kDesiredAlignment = 16;
start_address &= ~(kDesiredAlignment - 1);
DCHECK_GE(start_address, region_base);
}
region_size -= (start_address - region_base);
region_base = start_address;
mach_vm_size_t total_region_size = region_size;
// The stack region may have gotten split up into multiple abutting regions.
// Try to coalesce them. This frequently happens for the main threads stack
// when setrlimit(RLIMIT_STACK, …) is called. It may also happen if a region
// is split up due to an mprotect() or vm_protect() call.
//
// Stack regions created by the kernel and the pthreads library will be marked
// with the VM_MEMORY_STACK user tag. Scanning for multiple adjacent regions
// with the same tag should find an entire stack region. Checking that the
// protection on individual regions is not VM_PROT_NONE should guarantee that
// this algorithm doesnt collect map entries belonging to another threads
// stack: well-behaved stacks (such as those created by the kernel and the
// pthreads library) have VM_PROT_NONE guard regions at their low-address
// ends.
//
// Other stack regions may not be so well-behaved and thus if user_tag is not
// VM_MEMORY_STACK, the single region that was found is used as-is without
// trying to merge it with other adjacent regions.
if (user_tag == VM_MEMORY_STACK) {
mach_vm_address_t try_address = region_base;
mach_vm_address_t original_try_address;
while (try_address += region_size,
original_try_address = try_address,
(kr = MachVMRegionRecurseDeepest(task_,
&try_address,
&region_size,
&depth,
&protection,
&user_tag) == KERN_SUCCESS) &&
try_address == original_try_address &&
(protection & VM_PROT_READ) != 0 &&
user_tag == VM_MEMORY_STACK) {
total_region_size += region_size;
}
if (kr != KERN_SUCCESS && kr != KERN_INVALID_ADDRESS) {
// Tolerate KERN_INVALID_ADDRESS because it will be returned when there
// are no more regions in the map at or above the specified |try_address|.
MACH_LOG(INFO, kr) << "mach_vm_region_recurse";
}
}
*stack_region_size = total_region_size;
return region_base;
}
void ProcessReader::LocateRedZone(mach_vm_address_t* const start_address,
mach_vm_address_t* const region_base,
mach_vm_address_t* const region_size,
const unsigned int user_tag) {
#if defined(ARCH_CPU_X86_FAMILY)
if (Is64Bit()) {
// x86_64 has a red zone. See AMD64 ABI 0.99.6,
// http://www.x86-64.org/documentation/abi.pdf, section 3.2.2, “The Stack
// Frame”.
const mach_vm_size_t kRedZoneSize = 128;
mach_vm_address_t red_zone_base =
*start_address >= kRedZoneSize ? *start_address - kRedZoneSize : 0;
bool red_zone_ok = false;
if (red_zone_base >= *region_base) {
// The red zone is within the region already discovered.
red_zone_ok = true;
} else if (red_zone_base < *region_base && user_tag == VM_MEMORY_STACK) {
// Probe to see if theres a region immediately below the one already
// discovered.
mach_vm_address_t red_zone_region_base = red_zone_base;
mach_vm_size_t red_zone_region_size;
natural_t red_zone_depth = 0;
vm_prot_t red_zone_protection;
unsigned int red_zone_user_tag;
kern_return_t kr = MachVMRegionRecurseDeepest(task_,
&red_zone_region_base,
&red_zone_region_size,
&red_zone_depth,
&red_zone_protection,
&red_zone_user_tag);
if (kr != KERN_SUCCESS) {
MACH_LOG(INFO, kr) << "mach_vm_region_recurse";
*start_address = *region_base;
} else if (red_zone_region_base + red_zone_region_size == *region_base &&
(red_zone_protection & VM_PROT_READ) != 0 &&
red_zone_user_tag == user_tag) {
// The region containing the red zone is immediately below the region
// already found, its readable (not the guard region), and it has the
// same user tag as the region already found, so merge them.
red_zone_ok = true;
*region_base -= red_zone_region_size;
*region_size += red_zone_region_size;
}
}
if (red_zone_ok) {
// Begin capturing from the base of the red zone (but not the entire
// region that encompasses the red zone).
*start_address = red_zone_base;
} else {
// The red zone would go lower into another region in memory, but no
// region was found. Memory can only be captured to an address as low as
// the base address of the region already found.
*start_address = *region_base;
}
}
#endif
}
} // namespace crashpad